SENS4

SENS4 is going on in Cambridge, England.

The purpose of the SENS conference series, like all the SENS initiatives (such as the journal Rejuvenation Research), is to expedite the development of truly effective therapies to postpone and treat human aging by tackling it as an engineering problem: not seeking elusive and probably illusory magic bullets, but instead enumerating the accumulating molecular and cellular changes that eventually kill us and identifying ways to repair – to reverse – those changes, rather than merely to slow down their further accumulation.

Coverage can be found at Ouroboros aging research blog
and fightingaging.org:

SENS4, Session 1: Combating oxidation

Cathy Clarke tested an original and interesting approach to avoiding free radical damage to poly-unsaturated fatty acids, or PUFAs: isotope reinforcement. … The basic idea here, explained in an earlier paper, is very simple: heavier isotopes make stronger bonds, so isotope-reinforced PUFAs will be more resistant to free radical attack. Will these results transfer to higher organisms? Is there any chance that the deuterium could get incorporated into other molecules, stabilizing proteins that we want to degrade? The authors plan to follow up this study in worms and mice.

SENS4, Session 3: Optimising metabolism against aging

Stephen Spindler described his (ongoing) project to screen a large number of potential lifespan-affecting compounds in mice – so far, several candidates look promising. Interestingly, he also argued that the majority of previous studies measuring the effects of various compounds on rodent life expectancy suffer from serious flaws. In particular, he argued that many of them were confounded by a possible calorie restriction effect: mice are picky eaters, and if you change their diet by adding some compound to it, they will often eat less of it.

SENS4, Session 4: Adult regenerative capacity

Brandon Reines presented a counterintuitive result on regeneration: sometimes old animals have a higher regenerative capacity than young animals. In particular, if you punch a hole in the ear of a young mouse, then it won’t heal; but in a middle-aged mouse it will heal completely. He argued that this happens because mouse ear connective tissues never fully differentiate, and suggested that other neural-crest-derived connective tissues might show similar properties.

SENS4, Session 5: Eliminating recalcitrant intracellular molecules: the lysosome

John Schloendorn discussed ongoing work at the SENS Foundation Research Center to develop new enzymes that can degrade harmful intracellular junk that accumulates with age. So far, they have discovered enzymes that can degrade A2E and 7-ketocholesterol, which are implicated in macular degeneration and osteoporosis, respectively. Their next step will be to construct a drug delivery system to get these enzymes to lysozomes … On the lighter side, Schloendorn also described some of the Center’s methods for building functional lab equipment on the cheap, all good examples for aspiring DIY biologists.

SENS4, Session 6: Eliminating recalcitrant intracellular molecules: other

Claude Wischik spoke about preventing aggregation of tau protein, which is implicated in Alzheimer’s disease. Clinical trials of their aggregation-inhibiting drug Rember are promising: it seems to slow the down the rate of cognitive decline in patients with mild to moderate Alzheimer’s disease.

SENS4, Sessions 9 and 10: Rejuvenating extracellular material

Kendall Houk gave a very interesting talk on computationally designing enzymes from scratch. They plan to apply their recently published protocol to develop enzymes that can reverse the formation of Advanced Glycation End-products (AGEs) – sugar-modified proteins that accumulate with age and are implicated in several age-related diseases.

[h/t Al Fin]

Leave a comment

0
    0
    Your Cart
    Your cart is emptyReturn to Shop