We found 101 results for your search.
Presenter William Shih, Harvard Professor William is overseeing an effort to apply Synthetic Biology approaches to the development of self-assembling DNA nanostructures and devices for use in biomedical applications. In addition to carrying genetic information, DNA is increasingly being explored for its use as a building material. This new process is called DNA origami because… Continue reading William Shih, Harvard Professor | Multi-Micron Crisscross Structures Grown from DNA-Origami Slats
Presenter William Shih, Harvard University  William is overseeing an effort to apply Synthetic Biology approaches to the development of self-assembling DNA nanostructures and devices for use in biomedical applications. In addition to carrying genetic information, DNA is increasingly being explored for its use as a building material. This new process is called DNA origami… Continue reading William Shih | Fully addressable microstructures self-assembled from crisscrossed DNA-origami slats
California Institute of Technology is holding a symposium to honor Paul Rothemund’s seminal contribution to the field of DNA nanotechnology: the research paths opened by the technology, and where they might lead.
A lipid bilayer supported by a mica surface assisted the mobile self-assembly of DNA nanostructures of various shapes into micrometer-scale 2D lattices.
Designing a small DNA origami that can fold in several almost equivalent ways demonstrates how understanding and guiding the folding pathway can improve the efficiency of the folding process, potentially leading in more complex situations to higher yields of the desired nanostructure and fewer misfolded structures.
A new set of design rules enables constructing any wireframe nanostructure, which may lead to new medical applications and new nanomachines.
An automated design process folds arbitrary meshes to produce DNA origami structures difficult to design by previous methods, including more open structures that are stable in ionic conditions used in biological assays.
A 10-fold larger breadboard and 350-fold lower DNA synthesis costs make DNA origami a more useful stepping-stone toward atomically precise manufacturing.
Nanotech promises more commonplace access to advanced technology as material and fabrication costs fall and traditional barriers to innovation are removed. Examples are already being seen globally: more access to laptops and cell phones in developing countries, desktop 3D printers, a surge in establishment of shared-use research facilities, etc. A couple recent cases getting attention… Continue reading Recent cases of 'accessible' high-tech: Open source chips & Origami robots
In two different sets of experiments a German research group has shown that scaffolded DNA origami can be used to assemble complex structures with precise sub-nanometer positional control, and that constant temperature reaction can greatly increase yields and decrease production times.