Foresight Nanotech Institute Logo

« Go Back

You are viewing
Foresight Archives

Image of nano

Molecular Dynamics Simulations of
Carbon Nanotubule Bending and
the affect on Electrical Properties

J.D. Schall, O.A. Shenderova, D.W. Brenner*,
M. R. Falvo**, R. Superfine**, and R. M. Taylor*** b,c

This is an abstract for a talk to be given at the
Fifth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.


One potential application of the carbon nanotubule is in nanoscale mechanical sensors, e.g. nano-vibration gages, strain gages, etc. This paper discusses two aspects important to the development of such devices. Since the discovery of carbon-based nanotubules by Iijima, many theoretical and experimental studies of the electronic and mechanical properties of tubules have been conducted. Currently, experimental work is being conducted at the University of North Carolina-Chapel Hill using the 'Nano-Manipulator', a virtual-reality enhanced atomic force microscope. The microscope is being used to bend large multi-walled tubules. Tubes in the bent state exhibit a series of kinks in the region of the bend. Molecular dynamics simulations are used to provide insight into the dynamics of bending and to explain the existence of multiple kinks in the bent state. In the simulation, a 2000 atom single-walled carbon nanotublue is bent to approximately 60 degrees and then allowed to relax. The simulations show that many kinks form early and coalesce to form a few larger kinks, similar to what is seen in experiment. Stress analysis within the tubule is used to understand these results.

The change in electrical properties in the tubes as a function of deformation must also be understood in order to develop nano- sensors. The relative electrical conductivity between pristine and kinked tubules has been investigated using tight-binding calculations. Future work will involve bridging the experimental / theoretical gap by utilizing increased computational power and parallel processing to increase the size of computational models as well as decreasing the size of tubules used in experiment by the UNC group.

aSupported by the NASA-Ames Computational Nanotechnology Program

bSupported by the National Science Foundation

cSupported by the National Institutes of Health

*Corresponding Address:
Donald W. Brenner, Associate Professor, Department of Materials Science and Engineering, Department of Chemistry, Campus Box 7907, North Carolina State University, Raleigh, NC 27695-7907, ph: 919-515-1338, fax: 919-515-7724, email:


Foresight Programs


Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2018 Foresight Institute. All rights reserved. Legal Notices.

Web site developed by Stephan Spencer and Netconcepts; maintained by James B. Lewis Enterprises.