Foresight Nanotech Institute Logo

« Go Back

You are viewing
Foresight Archives

Image of nano

Self Assembly of Magnetic and Semiconducting Nanoparticles: Building Blocks for Nanotechnology

Stephen O'Brien*, a, Franz Redla, and Christopher B. Murrayb

aApplied Physics and Applied Mathematics, Columbia University,
New York NY 10027 USA

bIBM T.J. Watson Research Center,
PO Box 218, Route 134, Yorktown Heights, NY 10598

This is an abstract for a presentation given at the
10th Foresight Conference on Molecular Nanotechnology


One of the central challenges Nanotechnology seeks to address is the ability of the materials components to self-assemble into ordered arrays that will have function and utility. Physical, chemical, optical, magnetic or electronic properties of nanostructured materials can be tuned by adjusting size, shape and surface-modification. In addition to the optimisation and search for new materials, miniaturisation of existing compounds reveals that, as soon as the respective inherent bulk-limit (generally in the nanoscale regime) is surpassed, a drastic change of properties as a function of size. In order to take advantage of the potential of such properties in nanoscale materials one obstacle to overcome is their arrangement into utilizable dimensions. This issue has been addressed for single materials applying different strategies.1-3 One approach to this issue combines the advantage of miscibility of different materials by applying solution cast methods with close vicinity in the resulting dense material (although direct contact between particles is avoided by the surfactant). We present the first formation of a bimodal three-dimensional nanocrystal superlattice isomorph to NaZn13 built up 11 nm magnetic iron oxide particles (γ-Fe2O3) forming a cubic framework of superparamagnetic spheres and 6 nm semiconducting lead selenide particles inside of the maghemite-cube forming an icosahedron with an additional particle in the middle. The crystals were obtained by self-assembly of the materials during slow evaporation of the solvent from nearly monodisperse solutions. A nanocrystal superlattice of iron oxide magnetic nanocrystals prepared by this method is shown in figure 1.

Figure 1. Transmission Electron Microscope Image

  1. Brust, M. & Kiely, C. J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 202, 175-186 (2002).
  2. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545-610 (2000).
  3. Collier, C. P., Vossmeyer, T. & Heath, J. R. Nanocrystal Superlattices. Annu. Rev. Phys. Chem. 49, 371-404 (1998).

Abstract in Microsoft Word® format 28,486 bytes

*Corresponding Address:
Stephen O'Brien
Applied Physics and Applied Mathematics, Columbia University
500 West 120th Street, New York, NY 10027 USA
Phone: (212) 854 9478 Fax: (212) 854 8257


Foresight Programs


Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2018 Foresight Institute. All rights reserved. Legal Notices.

Web site developed by Stephan Spencer and Netconcepts; maintained by James B. Lewis Enterprises.