Foresight Nanotech Institute Logo

« Go Back

You are viewing
Foresight Archives

Image of nano

Design, Modeling, and Analysis of Nanomachines

Sergey Edward Lyshevski*

Department of Electrical and Computer Engineering, Purdue University at Indianapolis,
Indianapolis, IN 46202-5132 USA

This is an abstract for a presentation given at the
Eighth Foresight Conference on Molecular Nanotechnology.
There will be a link from here to the full article when it is available on the web.


In this paper, we report multidisciplinary research in design, analysis, control, modeling, and simulation of nanoscale machines (molecular nanomotors and nanogenerators with moving components). A wide class of innovative nanoscale machines is studied. In particular, novel rotational and translational nanomotors and nanogenerators with controlling nanocircuitry are examined. The nanomotors can be used as nanoswitches, nanologics, and nanomemories which are the basic components of nanocomputers. The nanogenerators can be used as nanoaccelerometers and nanogyroscopes (to measure linear and angular accelerations), nano shear stress sensors, nano flow sensors, etc. The rotational nanomachines have stator (stationary member) and rotor (movable member). Two rotating molecules (positive and negative doped molecules with +eq and -eq) and nanocylinder form the rotor (motion nanostructure), and the electromagnetic field is developed by the nanoantenna or nanowinding. The electromagnetic torque is produced, and motor rotates. A novel molecular bearing solution is proposed and examined. In addition to quantum phenomena, time-varying electromagnetic fields and feedback mechanism are thoroughly examined addressing operating and controlling principles of nanomachinery. The major emphasis is given to design nanomachines which are robust, reliable, and compliant to the desired specifications (temperature, pressure, vibration, et cetera). The proposed nanomachines allow us to overcome the well-known difficulties, and the researched solution provides a unified benchmarking avenue to analyze actuation/sensing - energy transfer - controlling - feedback mechanism - design at the nanoscale level.


  • E. Drexler et al., Unbounding the Future: the Nanotechnology Revolution, 1991.
  • S. E. Lyshevski, Nano- and Micro-Electromechanical Systems: Fundamental of Micro- and Nano-Engineering, CRC Press, 2000.
  • S. E. Lyshevski, Electromechanical Systems, Electric Machines, and Applied Mechatronics, CRC Press, 1999.

*Corresponding Address:
Sergey Edward Lyshevski
Department of Electrical and Computer Engineering
Purdue University at Indianapolis
723 West Michigan Street, SL 160B
Indianapolis, IN 46202-5132 USA


Foresight Programs


Home About Foresight Blog News & Events Roadmap About Nanotechnology Resources Facebook Contact Privacy Policy

Foresight materials on the Web are ©1986–2018 Foresight Institute. All rights reserved. Legal Notices.

Web site developed by Stephan Spencer and Netconcepts; maintained by James B. Lewis Enterprises.