Single molecule pump concentrates small molecules

A rotaxane-based single molecule pump combines cycling oxidation-reduction potential of the solution with kinetic barriers to moving backward to concentrate small ring molecules against an energy gradient.

Conference video: Microscopic Reversibility: The Organizing Principle for Molecular Machines

At the 2013 Conference Dean Astumian contrasted macroscopic machines at static equilibrium and molecular machines at dynamic equilibrium, and presented information ratchets and microscopic reversibility as the organizing principle of molecular machines.

Cotranscriptional folding of single RNA strand added to nanotechnology toolkit

RNA origami brings new dimensions to nucleic acid nanotechnology by exploiting the much greater variety of RNA structural motifs (compared to DNA) to do what cannot easily be done with DNA origami, like fold into predetermined nanostructures rapidly while being transcribed.

Atomically precise manufacturing as the future of nanotechnology

A commentary over at Gizmodo argues that ideas about molecular manufacturing that sounded like science fiction in 1986 now sound more like science fact.

Small, fast, electrically-driven nanomotors

Bulk nanoscale technologies were used to create three-segment nanowires of gold and nickel, and magnetic bearings of gold, nickel, and chromium. Combinations of DC and AC electric fields were used to assemble nanomotors that can spin at speeds up to 18,000r.p.m., and for up to 15 hours.

Designing mechanical functions into DNA nanotechnology

An overview of three decades of progress in DNA nanotechnology emphasizes bringing programmed motion to DNA nanostructures, including efforts to incorporate design principles from macroscopic mechanical engineering.

A tunable hinge joint for DNA nanotechnology

Variable length single-stranded DNA springs determine how far a hinge of double-stranded DNA joining two stiff sections of DNA origami can bend.

Structural DNA nanotechnology with programmed motions

Scaffolded DNA origami is combined with hinges of single- or double-stranded DNA to built simple machines parts that have been combined to program simple to complex motions.

Small molecule nanorobot walks through a protein nanopore

Among the smallest molecular robots reported so far, a walker based on phenylarsonous acid with two organic thiol ligands as feet walks through a one-nanometer-diameter protein nanopore channel by taking 0.6 nanometer steps, by thiol exchange, from one cysteine residue to the next.

Light-driven molecular flapping emits white light

A phosphorescent molecule is made to flap like a butterfly when absorbed light shortens the distance between two platinum atoms.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop