We found 58 results for your search.

DNA nanotechnology cages localize and optimize enzymatic reactions

Encapsulating enzymes in nanocages engineered using structural DNA nanotechnology increases enzymatic digestion and protects enzymes from degradation.

Molecular arm grabs, transports, releases molecular cargo

A molecular robotic arm synthesized from small synthetic organic molecules uses cyclic changes in pH and other reaction conditions to grab and release a cargo molecule, and swing the cargo back and forth between the two ends of the molecular platform.

Nanoparticles ameliorate MS in mice by inducing immune tolerance of myelin

In the first mouse model of the progressive form of multiple sclerosis, nanoparticles that created immune tolerance to myelin prevented the development of progressive MS.

Using DNA nanotechnology to position molecules with atomic precision

German researchers have used scaffolded DNA origami to adjust the angle of a DNA hinge joint by altering the length of special “adjuster helices”, causing molecules attached to the sides of the hinge to be displaced by as little as 0.04 nm.

Automated design of polyhedral meshes for DNA origami

An automated design process folds arbitrary meshes to produce DNA origami structures difficult to design by previous methods, including more open structures that are stable in ionic conditions used in biological assays.

Arranging molecular chromophores on DNA brick nanobreadboards

Nanobreadboards made of DNA bricks provide twice the positional precision, twice the packing density, and faster prototyping than do alternative means to arrange functional molecules.

Foresight co-sponsors Berkeley Bench to Market event

To educate potential entrepreneurs on strategies for moving discoveries from the benchtop to successful commercialization, Foresight co-sponsored an event in the “Ph.D. to Startup” Workshop Series of the Berkeley Postdoc Entrepreneur Program.

Linking together small DNAs to build more diverse DNA nanostructures

Using the enzyme DNA ligase and small DNA strands as building blocks provides an efficient and less expensive path to a large variety of DNA scaffolds and other structures.

DNA nanomachines more stable than expected in human serum and blood

Even without special designs and coatings to promote stability, simple DNA nanomachines can survive in human serum and blood for hours or even days, much longer than expected from previous studies using bovine serum, which has more damaging nucleases than does human serum.

Dynamic nanomachines for DNA nanotechnology inspired by proteins

Programmed assembly and disassembly of rigid 3D DNA origami objects has been achieved by designing complementary surface shapes based upon weak stacking interactions to create simple nanomachines.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop