We found 56 results for your search.

Molecular robot builds four types of molecules

Since winning the 2007 Foresight Institute Feynman Prize in Nanotechnology, Theory category, Professor David Leigh FRS FRSE FRSC MAE, and since 2012 at the University of Manchester, has continued to achieve major milestones on the road to complex systems of molecular machinery. Contributions we have recently cited here: First direct measurement of force generated by… Continue reading Molecular robot builds four types of molecules

Two-component, 120-subunit icosahedral cage extends protein nanotechnology

Ten designs spanning three types of icosahedral architectures produce atomically precise multi-megadalton protein cages to deliver biological cargo or serve as scaffolds for organizing various molecular functions.

Designing novel protein backbones through digital evolution

Computational recombination of small elements of structure from known protein structures generates a vast library of designs that balance protein stability with the potential for new functions and novel interactions.

Assembling a large, stable, icosahedral protein molecular cage

A trimeric protein was designed to self assemble into a 60 unit icosahedron with a roomy interior that might find use to ferry molecular cargo into cells or as a chemical reactor.

Roles of materials research and polymer chemistry in developing nanotechnology

Polymer chemistry and materials research provide opportunities to explore structures that harmonize phenomena unique to nanoscale technology, the role of mechanical forces generated at interfaces, and the responses of biological systems to mechanical stresses.

Rational design of protein architectures not found in nature

Computational design of proteins satisfying predetermined geometric constraints produced stable proteins with the designed structure that are not found in nature.

Foresight co-sponsors Berkeley Bench to Market event

To educate potential entrepreneurs on strategies for moving discoveries from the benchtop to successful commercialization, Foresight co-sponsored an event in the “Ph.D. to Startup” Workshop Series of the Berkeley Postdoc Entrepreneur Program.

Cotranscriptional folding of single RNA strand added to nanotechnology toolkit

RNA origami brings new dimensions to nucleic acid nanotechnology by exploiting the much greater variety of RNA structural motifs (compared to DNA) to do what cannot easily be done with DNA origami, like fold into predetermined nanostructures rapidly while being transcribed.

Automated synthesis expands nanotechnology building block repertoire

Iterative coupling, purification, and cyclization of a large collection of organic building blocks promises a vast array of complex small and medium sized molecules as candidates for drug discovery, catalysis, and nanotechnology.

Artificial enzymes created from building blocks not found in nature

Artificial enzymes have been created from nucleic acids that use synthetic molecules instead of ribose or deoxyribose sugars.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop