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At	Foresight	Institute,	we	believe	that	many	of	the	most	promising	breakthroughs	

in	science	happen	at	the	intersection	of	di昀昀erent	昀椀elds,	both	in	the	long-run	and	in	

the short-term. 

In	the	long-run	arti昀椀cial	intelligence	and	molecular	nanotechnology	are	poised	to	

shape	our	world	like	no	technology	that	has	come	before.	In	narrow	ways,	arti昀椀cial	

intelligence has already achieved superhuman capabilities. Machines beat humans 

at	computing	prime	numbers,	charting	itineraries,	and	steering	vehicles,	for	example.	

While	all	of	these	achievements	are	impressive	in	isolation,	the	race	in	arti昀椀cial	gen-

eral intelligence  is less about breaking more and more records with carefully coded 

algorithms,	and	more	about	creating	systems	that	can	generalize	to	more	tasks	and	

to	challenges	that	require	qualities	which	we	consider	innately	“human”,	such	as	cre-

ativity	and	intuition.	The	victory	of	the	AlphaGo	program	against	Lee	Sedol,	the	best	

human	in	the	game	of	Go,	for	instance,	was	considered	signi昀椀cant	precisely	because	

Go,	when	played	at	the	highest	professional	level,	requires	a	deep	intuition	for	the	

game as well as creativity. The level of complexity and the number of possible paths 

is so high that it cannot be solved algorithmically in the traditional sense. AI technolo-

gies	such	as	Deep	Learning,	together	with	recent	developments	in	computing	hard-

ware,	o昀昀er	a	way	to	tackle	this	complexity.	Ultimately,	the	arrival	of	arti昀椀cial	general	

intelligence,	while	holding	promises	and	perils,	is	likely	to	be	at	least	as	revolutionary	



in its capacity to shape its environment as was previously the dawn of humanity. Even 

likelier,	it	will	exceed	our	world-shaping	capacity	by	orders	of	magnitude.

The long-term prospects of nanotechnology are on a similarly impactful scale: 

In	 1986	 Foresight	 was	 founded	 on	 a	 vision	 of	 the	 emerging	 昀椀eld	 of	 nanotechnol-

ogy in which current capabilities in nanotechnology lead eventually to fabrication 

of complex products with atom-by-atom control of the manufacturing process. This 

ultimate	 development	 of	 nanotechnology,	 sometimes	 termed	 molecular	 manufac-

turing	and	now	often	termed	APM	(atomically	precise	manufacturing),	was	昀椀rst	de-

scribed	by	Richard	Feynman	in	1959	in	his	visionary	talk	“There’s	Plenty	of	Room	at	

the	Bottom.”	The	ability	to	manufacture	with	atomic	precision	promises	a	revolution	

in	manufacturing,	leading	to	a	world	of	abundance.	Medical	nanodevices	that	cure	

diseases,	can	improve	health	and	longevity,	nano-enabled	photovoltaics	that	allow	

for	abundant	solar	energy	can	heal	the	environment,	and	new	materials	a	factor	of	

100 times stronger than steel can enable space exploration.

For	 an	 overview	 of	 AI,	 nanotechnology,	 and	 possible	 roads	 to	 arti昀椀cial	 general	

intelligence	and	molecular	nanotechnology,	please	see	the	background	reading	at	

the end of the white paper.

On	a	less	speculative	and	more	immediate	note,	the	workshop	on	AI	for	Scienti昀椀c	

Progress arose from a need that became apparent during our workshop series on 

nanotechnology.  Many of the bottlenecks that  participants repeatedly stressed dur-

ing previous technical workshops appeared to be solvable with the help of AI. The 

design of molecular nanotechnology is a challenge with an unfathomably high level 

of complexity. Just like a generic computer cannot go through all possible steps in 

Go	in	order	to	beat	the	game,	it	cannot	model	all	possible	combinations	of	atoms	to	

form	useful	molecules.	This	is	where	emergent	AI	technologies	give	us	hope.	Qua	

their	 computing	 power	 and	 昀椀ne-tuned	 algorithms,	 AI-tools	 are	 uniquely	 equipped	

to	 learn	from	the	abundance	of	 information	at	 the	nanoscale,	 in	ways	humans	are	

unable	 to	 do.	 Conversely,	 nanotechnology	 research	 can	 lead	 to	 progress	 in	 hard-

ware that can tremendously advance computing power and boost progress in AI 

-	accelerating	the	mutually	bene昀椀cial	feedback	loop	between	the	two	technologies.	

The	value	of	this	meta-workshop,	AI	for	Scienti昀椀c	Progress,	was	to	propose	and	dis-

cuss the most promising routes for immediate collaboration between AI and nano-

technology	 experts.	 From	 the	 60+	 possible	 proposals	 discussed	 at	 this	 workshop,	

the	most	promising	ideas	were	developed	into	technical	research	proposals,	which	

comprise the main corpus of this whitepaper. These proposals are deeply interdisci-

plinary,	ranging	from	machine-learning	based	simulation	of	nano-processes	to	data	

standards of collaborative AI and Nanotechnology research. The projects have the 
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potential  to advance the state of research in atomic precision and to lead to a virtu-

ous	feedback	loop	that	simultaneously	advances	research	in	AI	signi昀椀cantly.	Some	of	

these proposals are now open for collaboration and funding. 

The	AI	tools	discussed	apply	not	only	to	nanotechnology,	but	can	also	advance	

scienti昀椀c	research	on	a	more	general	level.	In	a	time	when	borders	between	di昀昀erent	

scienti昀椀c	disciplines	are	broken	down,	these	projects	are	important	signposts	to	new	

mutually	bene昀椀cial	research	avenues.	Opening	up	and	embarking	on	these	avenues	

requires	action.	If	you	want	to	see	a	bright	future	realized,	please	consider	support-

ing	us	so	we	can	scale	up	our	e昀昀orts.	Consider	giving	to	Foresight,	get	in	touch	to	

volunteer,	advocate	for	the	bene昀椀cial	development	of	technologies,	and	spread	the	

word about our work. 

Here are testimonials from workshop participants:

“These	were	some	of	the	most	stimulating	days	of	my	career.”	

“I’m	delighted	by	how	many	fascinating	conversations	 I	was	able	to	have.	
I	was	glad	to	 just	be	there,	 to	meet	great	people	and	soak	up	all	 the	as-

tonishing	 information	concerning	what’s	going	on	 in	the	current	world	of	
AI-Nano	synergy.”

A	meta-workshop	was	needed	to	develop	arti昀椀cial	intelligence-assisted		
tools	that	could	break	through	the	bottlenecks	faced	by	scienti昀椀c	research-

ers	and	have	the	potential	to	signi昀椀cantly	advance	scienti昀椀c	research	on	a	
more general level

We at Foresight thank all participants for their open-mindedness and ingenuity. A 

special thanks goes to our volunteers and Lucid Productions who make these work-

shops into what they are. 

Julia	Bossmann	-	Foresight	Institute

Allison Duettmann - Foresight Institute
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The long-run:

Synergistic world-changing technologies

Foresight	Institute’s	mission	is	to	support	the	development	of	world-shaping	tech-

nologies	that	lead	toward	an	abundant	future.	Central	to	this	vision,	in	the	30	years	

since	its	inception,	is	the	concept	of	the	ultimate	manufacturing	technology,	able	to	

inexpensively	 produce	 essentially	 any	 con昀椀guration	 of	 atoms	 compatible	 with	 the	

laws	 of	 physics,	 thus	 bringing	 digital	 control	 to	 physical	 matter.	 The	 goal	 is	 to	 cre-

ate a technological revolution even more important than the revolution that brought 

digital control to the world of information over the past century. We live in a world 

composed	of	atoms;	this	new	technology	has	the	potential	to	meet	all	of	our	material	

needs	inexpensively,	rearrange	atoms	in	cells	to	cure	disease	and	heal	injuries,	and	

maintain	youthful	vigor	inde昀椀nitely.

This	 concept	 has	 its	 intellectual	 origin	 in	 a	 proposal	 by	 physicist	 Richard	 Feyn-

man	in	1959,	and	was	originally	named	nanotechnology	by	Foresight’s	co-founder	in	

1986.	The	name	has	been	modi昀椀ed	several	times	to	distinguish	this	advanced,	still	

unrealized	technology	from	other,	less	precise	technological	manipulation	of	matter	

at	the	nanometer	scale.	The	key	idea	is	atomic	precision,	which	means	specifying	the	



number,	position,	and	bonding	for	each	atom	in	a	device	or	system	to	achieve	the	

designed function of the device or system. The ultimate manufacturing technology 

is	thus	general	purpose,	high-throughput,	Atomically	Precise	Manufacturing	(APM).

Foresight’s	 founding	 vision	 anticipates	 atomically	 precise	 manufacturing	 devel-

oping	concurrently	with	advances	in	other	technologies.	In	particular,	the	昀椀eld	of	Ar-

ti昀椀cial	Intelligence	(AI),	which	also	had	its	origins	in	the	1950s,	is	anticipated	to	evolve	

to	enable	automated	scienti昀椀c	 inquiry	and	automated	engineering	design.	To	ben-

e昀椀t	from	the	ability	to	arrange	atoms	as	desired,	one	needs	to	know	what	arrange-

ments	will	achieve	a	desired	purpose.	Conversely,	atomically	precise	manufacturing	

is anticipated to greatly accelerate the development of more powerful computers 

to	provide	the	infrastructure	for	more	advanced	AI,	i.e.	Arti昀椀cial	General	Intelligence	

(AGI).	Thus,	the	speed	at	which	either	one	of	these	technologies	advances	can	sub-

stantially impact the speed at which the other technology develops. This interplay is 

nicely	reviewed	by	Sacha	and	Varona	in	2013	(1).

Rationale foR the woRkshop

.
“Foresight 
Institute’s founding 
vision includes 
a mutually 
beneficial 
synergy between 
atomically precise 
nanotechnology 
and artificial 
intelligence.”

The short-term:

Overcoming existing roadblocks in research

In	September	of	2014,	Foresight	began	a	series	of	small,	fast-paced,	interactive,	

2.5-day workshops focused on advancing revolutionary technologies by gathering a 

carefully curated group of wide-ranging thinkers from various disciplines. The goals 

of these workshops are to assist various researchers in overcoming roadblocks to 

technology	 development,	 facilitate	 collegiality	 among	 researchers	 from	 diverse	

backgrounds while promoting an interdisciplinary approach to identifying and solv-

ing	research	problems,	and	initiating	novel,	fundable,	collaborative	projects.	Results	

are	achieved	through	a	fast-paced	process	based	on	‘Design	Shop’	principles	that	

helps	participants	collectively	let	down	their	guard,	push	the	envelope	of	the	pos-

sible,	and	generate	lots	of	ideas	quickly	to	seed	entirely	new	research	directions.	

this series of technical workshops began with the “2014 Workshop on Directed/

Programmable Matter for energy”, followed by the “2015 Workshop on Atomic Preci-

sion for Medical Applications”, and, most recently,  “Breakthrough technologies for 

energy” in May 2016. over the course of the workshop series, it became clear that 

the main bottlenecks that repeatedly held participants back from advancing their re-

search could be solvable with the assistance of AI: 

.
“Workshops are 
based on a fast-
paced ‘Design 
Shop’ group 
achievement 
brainstorming 
process.”
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At	 the	 Breakthrough	 Technologies	 for	 Energy	 Workshop,	 researchers	
called for the development of software to produce a programming envi-

ronment	that	helps	design	molecular	machines,	analogous	to	existing	CAD	
software	(see	Whitepaper,	p.	37).	

At	 the	 Atomic	 Precision	 for	 Medicine	 Workshop,	 researchers	 acknowl-
edged	that	the	development	of	昀椀ne-tuned	sensors	measuring	many	health	
values	in	patients	would	pose	a	signi昀椀cant	challenge	for	data	analysis	and	
called	for	software	for	evaluating	large	data	sets	(see	Whitepaper,	p.	11).

Another opportunity for AI became clear from the interdisciplinary nature of inno-

vation more generally: Foresight believes that innovation is sparked at the intersec-

tion	 of	 existing	 昀椀elds.	 However,	 a	 signi昀椀cant	 obstacle	 to	 progress	 with	 interdiscipli-

nary	projects	such	as	the	ones	developed	at	the	workshops	is	the	di昀케culty	of	sharing	

information that is relevant for the researchers across disciplines in a format and 

language that is readily accessible and understandable. Much time at workshops is 

lost	in	translation	of	terminology	and	jargon	speci昀椀c	to	certain	disciplines,	but	unfa-

miliar to others.





.
“Bottlenecks 
faced at Foresight 
workshops that 
seem treatable 
via AI: design and 
simulation, big 
and small data-
analysis, data 
standards for 
interdisciplinary 
research.”
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Forty-four	researchers	were	invited	to	Palo	Alto	from	Sept.	30	to	Oct.	2,	2016	to	ap-

ply	AI,	narrowly	de昀椀ned	as	advanced	computer	science,	to	progress	nanotechnology	

and	the	scienti昀椀c	昀椀eld	generally.	Historically,	Foresight’s	workshops	were	invitation-

only.	 This	 AI	 workshop	 was	 the	 昀椀rst	 to	 open	 attendance	 to	 individuals	 who	 might	

have	fallen	under	our	radar,	such	as	hackers,	PhD’s,	students,	and	self-taught	 indi-

viduals	with	an	interest	in	AI,	presenting	them	the	opportunity	to	bring	their	diverse	

skillsets to the challenge. The AI expertise represented included knowledge repre-

sentation,	expert	systems,	deep	neural	networks,	machine	learning	(especially	deep	

learning),	natural	language	processing,	and	arti昀椀cial	general	 intelligence	(AGI).	The	

nanotechnology	 expertise	 represented	 included	 materials	 science,	 computational	

chemistry,	organic	synthesis,	surface	physics,	biochemistry,	molecular	biology,	and	

engineering. 

On	the	nano-side,	the	workshop	focused	on	the	use	of	AI	to	speed	pathways	to	

the construction of atomically precise 3D objects. These include objects and devices 

made	of	DNA,	RNA,	or	proteins,	constructed	using	organic	or	inorganic	synthesis,	or	

using scanning probes to build from the bottom up. AI can speed the design and 

fabrication	of	increasingly	complex	con昀椀gurations	of	atoms.	Machine	learning	allows	

meaning	extraction	from	immense	datasets,	which	is	critical	as	various	types	of	3D	

atomically	precise	sensors	require	real-time	analysis	of	rapidly	increasing	amounts	

.
“Formerly 
invitation-only, this 
was Foresight’s 
first workshop to 
allow applications 
from hackers, 
PhD’s, self-taught 
students, and 
others.”
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of data and as images of biological structures become more detailed. 

From the pool of 60+ research ideas at the intersection of AI and nanotechnology 

that	were	generated	at	the	workshop,	the	most	feasible	and	desirable	eight	resulted	

in the creation of technical project proposals. This section gives an overview of the 

proposals and links to the presentation videos. Several of the projects are now being 

pursued for further research and are open to funding and collaboration. Please see 

the	participant	list	for	the	credentials	and	a昀케liations	of	participants,	or	contact	Fore-

sight Institute at foresight@foresight.org.

woRkshop Results

Team members:		Jeremy	Barton,	Ben	Goertzel,	Sergei	Kalinin,	Patrick	Riley,	Kent	

Kemmish,	Anatole	Von	Lilienfeld,	Jeremy	Barton,		Zhiyong	Zhang	and	others

PROPOSAL

We	will	train	machine	learning	models	using	databases	of	quantum	chemistry	[1],	

as well as experimental results. This approach will deliver atomistic potentials with 

full	quantum	mechanical	accuracy,	while	boosting	the	e昀케ciency	of	simulation	times	

by	 6	 orders	 of	 magnitude.	 To	 extend	 the	 databases,	 we	 will	 run	 high-level	 quan-

tum	calculations	on	millions	of	molecules	[2]	to	serve	as	training	data	for	replacing	

the	approximations	of	cheaper	calculations	with	machine	learned	models.	Further,	

we	will	integrate	experimental	data,	for	example,	from	high	resolution	imaging	and	

spectroscopic	 tools	 (ultrafast	 STEM	 and	 X-ray),	 and	 develop	 inferential	 tools	 to	 in-

corporate these into our theoretical framework. Our easy-to-use integrated platform 

will	be	accessible	to	simulation	experts,	but	more	 importantly,	to	experimentalists	

who can use the platform to generate and validate ideas for experimental processes 

designs and validation. We will consider immediate near-term applications of im-

proved	calculations.	Particularly,	in	the	昀椀eld	of	molecular	drug	design,	state-of-the	

art	methods	fail	to	yield	predictive	results	[3].	This	implies	urgent	need	for	methods	

which can be used to identify useful drugs. A possible target exemplary drug design 

challenge	is	to	昀椀nd	small-to-medium	sized	organocatalysts	for	the	speci昀椀c	and	ef-

昀椀cient	remediation	of	extracellular	matrix	covalent	cross	links,	and	more	speci昀椀cally,	

the most abundant and problematic advanced glycation end product in human biol-

ogy,	glucosepane	[4].	

Project 1:

Accurate and scalable machine learning based 

atomistic simulation for nano structures and 

processes
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PRESENTATION	By	ANATOLE	VON	LILIENFELD

https://youtu.be/3MNsHVnTD8I

Transcript 

We	want	to	develop	machine	learning	models	that	are	so	e昀케cient	and	so	accurate	

that we can use them to predictively screen the behavior of matter at the atomistic 

level.	 These	 machine	 learning	 models	 can	 be	 trained;	 we	 showed	 that	 that	 works	

using	using	quantum	chemistry	results	just	as	well	as	experimental	results.	So	we	

formed	a	team	where	we	can	do	experiments	and	quantum	chemistry	simulations	

to	very	high	accuracy	and	precision,	and	we	also	have	machine	learning	experts	to	

train these models.

This is a really crucial step towards this overall goal - to gain digital control of mat-

ter. As seen on the Chematica presentation by Grzybowski (who won the 2016 Fore-

sight	Feynman	Prize)	yesterday,	the	number	of	possibilities	is	really	combinatorial.	If	

your	computer	program	is	 incapable	of	reliably	screening	these	options,	 then	you	

are in bad shape if you afterwards want to realize these materials in the real world.

One	of	the	possible	applications	that	we	昀椀nd	very	attractive	is	to	use	these	tools	

to	screen	large	spaces	of	molecules,	and	to	昀椀nd	interesting	molecules.	One	target	

is	shown	[in	ref.	4	below].	This	is	important	for	aging;	actually,	you	all	su昀昀er	from	this.	

These are two amino acids that occur naturally in proteins. Imagine my arms are the 

backbones	of	two	di昀昀erent	proteins	[holding	up	his	arms].	Lysine	and	arginine	con-

dense together with glucose forming something called an advanced glycation end 

product.	This	molecule	covalently	bonds	two	di昀昀erent	proteins	 in	the	extracellular	

matrix. It is one of the seven well-known factors that contribute to aging.
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This	is	a	covalent	bond,	and	we	would	like	to	break	it.	To	do	so,	you	need	a	mol-

ecule	that	will	bind	to	this	AGE	selectively.	There	are	10^60	molecules,	by	conserv-

ative	 estimate,	 that	 could	 be	 candidates	 to	 break	 this	 bond.	 Thus,	 we	 need	 rapid	

methods	to	screen	and	score	such	molecules.	Without	such	methods,	 there	 is	no	

hope	of	昀椀nding	an	active	molecule	by	chance.

We	have	a	fantastic	team	with	the	needed	specialties	and	we	have	the	required	

datasets.	Once	we	have	these	tools,	we	can	use	them	in	optimization	algorithms	to	

explore	 this	 space	 e昀케ciently;	 of	 course,	 we	 could	 always	 scale	 this	 e昀昀ort	 up	 with	

more	funding.	We	want	to	combine	experiments	and	quantum	simulations	so	that	

possibly we could extend known laws of physics if we discover regularities that are 

unaccounted	for	by	conventional	quantum	mechanical	approximations.

Please see the appendix for a volunteer contribution to this project, “A hypothetical 

AI-backed CAD for nanotechnology” by Jazear Brooks.
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Resources available

Computing: Google	 cloud,	 Swiss	 Supercomputing	 Center,	 Stanford	 Research	

Computing	center,	XSED	(NSF),	Scicore	(University	of	Basel).

Software: AIDA,	 Games,	 NWChem,	 QuantumEspresso,	 R,	 WEKA,	 RDKIT,	 tensor-

昀氀ow

People needed: Machine	learning	experts,	systems	experts,	quantum	chemists/

physicists,	experimentalists,	robotics
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PRESENTATION	By	STEVEN	FOWKES

https://youtu.be/Dyy_Eq3NTAw

PROPOSAL

To study and exploit metal catalyst capabilities that are enabled by atomic pre-

cision.	 This	 would	 provide	 new	 catalysts	 for	 relevant	 organic	 reaction,s	 as	 well	 as	

the basic research of metal-metal bonding and redox gradients. The vast number of 

system	parameters	will	make	use	of	narrow	AI	to	build	a	pro昀椀le	to	develop	catalysts	

for real world applications.

Transcript 

This	morning,	I	sat	down	with	Conrad	and	we	started	talking	about	the	possibility	

of	 blending	 two	 di昀昀erent	 systems	 of	 nanostructural	 self-assembly:	 Schafmeister’s	

spiral	ladder	polymers	and	Nanopolymer	System’s	aromatic	polymers.	Immediately,	

we	started	thinking	about	a	speci昀椀c	example	and	decided	to	turn	it	into	a	presenta-

tion,	so	what	you	are	seeing	here	is	science	and	business	in	90	minutes.

The	 idea	 is	 the	 production	 of	 catalysts,	 and	 Chris	 Schafmeister	 has	 been	 inter-

ested in this for a few years. The idea is to use spiro oligomers to create triangular 
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Atomic Precision metal Clusters

woRkshop Results

https://youtu.be/DYY_Eq3NTAw


woRkshop Results

technology	 could	 create	 nanocoils,	 represented	 here	 in	 black,	

that would have the ideal bonding interior to coordinate metal 

atoms	and	metal	ions,	and	this	would	provide	a	way	of	creating	

a	 catalytic	 unit	 that	 could	 昀椀t	 into	 the	 middle	 of	 this	 cyclic	 su-

perstructure. So the idea is that the polymer provides the outer 

structure to prevent the metal atoms that are bonded to each 

other from undergoing redox reactions and precipitating each 

other so that you can then have catalytic activity involving direct 

electron	昀氀ow	from	metal	atom	to	metal	atom	without	the	need	

for tunneling.

There	are	all	kinds	of	great,	new	theoretical	advantages	that	we	can	talk	about.

Catalysts for new organic chemistry reactions of the sort that were dis-

cussed yesterday with respect to Chematica.

By	attaching	photon	absorbing	groups	to	the	outside	of	the	aromatic	poly-

mer,	 we	 can	 input	 energy	 into	 the	 system	 to	 facilitate	 catalysis.	 We	 can	
have	di昀昀erent	functional	groups	at	di昀昀erent	places	on	the	ring	to	input	pho-

ton	 energies	 independently	 into	 each	 metal	 atom,	 so	 we	 can	 have	 each	
one	tuned	to	a	di昀昀erent	frequency	(thank	you,	Jeremy,	for	that	contribution	
to our program).

We can do metallic and subvalent ions so that we can control the redox 

potential of the construct.

We	 can	 study	 basic	 science	 of	 metal-metal	 bonding	 in	 a	 linear	 system,	
which	has	been	very	di昀케cult	 to	do.	We	can	study	the	pro昀椀le	of	complex	
redox	gradients,	and	whether	or	not	we	can	create	gating	e昀昀ects	for	elec-

trons.

Proof	of	concept	for	de	novo	enzyme	design,	looking	at	this	as	an	expert	
system	that	will	allow	us	to	learn	how	all	of	these	systems	work,	and	put	
them	together	to	accomplish	speci昀椀c,	predetermined	catalytic	goals.

We	can	also	take	this	from	linear	 into	to	other	kinds	of	geometries	 in	the	future,	

once we have explored the value of this idea.

This is a narrow AI for the system parameters of the catalyst. We will want to pay 

attention	 to	 the	 metal	 sequence	 of	 the	 elements,	 the	 redox	 state	 of	 each	 one,	 the	

photon	inputs,	how	long	are	the	clusters,	the	structure	of	the	redox	gradient	(do	we	

go	up	and	then	down,	or	do	we	go	up	in	steps),	what	kinds	of	catalytic	properties	can	

be obtained.
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We	are	projecting	a	budget	of	$1	million	for	phase	1,	which	is	just	the	initial	building	

of	the	昀椀rst	prototype.	We	think	it	will	take	昀椀ve	people	to	do	this.	Once	that	is	done	and	

we	move	to	phase	two,	where	we	do	a	survey	of	all	the	昀椀rst	row	transition	elements,	

that	is	going	to	involve	an	AI	team,	and	neither	of	us	is	quali昀椀ed	to	predict	what	that	is	

going	to	entail.	Future	work	would	involve	collaborations	with	organic	chemists,	with	

industry.	Phase	3	would	be	building	super-catalysts	for	speci昀椀c	applications,	like	昀椀x-

ing nitrogen or CO2 conversion.

Products	would	include		enzymes,	catalysts,	energy	capture	systems	(which	might	

lead	to	an	electron-gating	element),	and	catalytic	昀氀ow	reactors	having	sequences	of	

enzymes arranged in a line.

An	 obvious	 source	 of	 funding	 would	 be	 government	 grants,	 then	 industry	 con-

tracts,	and	then	“private	sector”	to	encompass	everything	else.	We	are	not	too	proud	

to take money from anybody. The features that will promote this project include bet-

ter	 throughput	 for	 enzymes,	 more	 economical,	 more	 programmable,	 tunable	 and	

adaptable.

woRkshop Results
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Team member:		Sergei	Kalinin

PROPOSAL

Assembling	matter	atom	by	atom,	precisely	and	controllably,	is	the	ultimate	goal	

of nanotechnology. The reigning paradigms to enable this goal are scanning probe 

microscopy (SPM) and synthesis. SPM assembly dates back to seminal experiments 

by	Don	Eigler,	who	demonstrated	single	atom	manipulation	and	writing.	yet	stabil-

ity	and	throughput	remain	issues,	and	only	in	the	last	decade	synergy	of	STM	and	

surface	chemistry	was	used	to	make	several-qubit	devices.	The	molecular	machines	

approach harnesses the power of modeling and synthetic chemistry to build indi-

vidual	functional	blocks,	yet	strategies	for	structural	assembly	remain	uncertain.

We propose a third paradigm — the use of atomically focused beam of scanning 

transmission electron microscope to control and direct matter on atomic scales. Tra-

ditionally,	scanning	transmission	electron	microscopies	(STEMs)	are	perceived	only	

as	imaging	tools,	and	any	beam	induced	modi昀椀cations	are	undesirable	beam	dam-

age.	yet	in	the	last	昀椀ve	years,	our	team	and	several	groups	worldwide	demonstrated	

that	beam	induced	modi昀椀cations	can	be	more	precise.	We	have	demonstrated	or-

dering	 of	 oxygen	 vacancies,	 single	 defect	 formation	 in	 2D	 materials,	 and	 beam	 in-

duced migration of single interstitials in diamond like lattices. What is remarkable is 

that	these	changes	often	involve	one	atom	or	a	small	group	of	atoms,	and	can	be	

Project 3:

Atomic Forge

PRESENTATION	By	SERGEI	KALININ

https://youtu.be/mZMhRPAJRsw

https://youtu.be/mZMhRPAJRsw


monitored	real	time	with	atomic	resolution.	This	ful昀椀lls	two	out	of	three	requirements	

for atomic fabrication.

In	this	project,	we	seek	to	transition	from	e昀昀ect	and	observation	to	control.	We	

seek to harness these beam induced high energy phenomena to actively control 

matter.	As	a	proof,	we	have	implemented	beam	control	in	STEM	to	create	single	digit	

nanometer structures that can be formed and imaged with atomic resolution. We 

believe that this approach can be extended to create 3D structures in the bulk with 

atomic precision.

Note	that	AI	will	be	a	central	element	of	this	development.	First	of	all,	STEM	al-

ready use machine learning to form the beam (64 tunable elements of aberration 

correction).	In	order	to	implement	the	Atomic	Forge,	we	will	need	to:

create the library of structures and beam induced transformations (much 

like	cause	and	probability	of	e昀昀ect	look	up	table),

create rapid image analytic tools to identify observed atomic structures 

from	ptychography	and	local	imaging,

rapid	decision	making	(given	observed	structures	and	known	cause-e昀昀ect	
relationship,	what	do	we	need	to	do	to	make	atoms	move	where	we	want).

Speaking of feasibility:

There	is	a	large	昀氀eet	of	STEM	platforms	that	can	be	repurposed	for	these	
applications (so scalability is taken care of).

What we need in year 1 is a rapidly built up knowledge base. The proposed 

cost	for	contracts,	postdoctoral	e昀昀ort,	and	theory	development	is	approxi-
mately $1 million in year one.

The expected deliverable is to make an atom move in selected lattice site 

in	the	bulk/form	sub	5	nm	crystalline	line/create	given	sparse	vacancy

	 year	 2-3	 will	 require	 rapid	 cost	 ramp	 up	 to	 demonstrate	 assembly	 and	
establish theory base.

Ask	me	how,	why	our	team,	why	now.
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Transcript 

This	morning,	I	want	to	give	you	the	atomic	forge,	so	let	me	tell	you	what	it	is.	Most	

of this meeting basically talked about how we can make and direct matter on the 

atomic level. There are two paradigms to do that. One is just to start from scratch. 

Let’s	pick	atoms	on	the	surface;	let’s	manipulate	them.	This	is	how	nanotechnology	

started. This is what we have been able to achieve in 25 years. It works. It costs a lot 

of	 money;	 it	 requires	 integration	 between	 STM	 and	 surface	 chemistry,	 but	 we	 can	

make	multiple-qubit	devices	now.	The	problem	is	that	it	is	surfaces,	it	is	slow,	and	it	is	

a limited range of materials.

The	second	paradigm,	which	has	attracted	attention	since	Eric	Drexler’s	book,	 is	

the	molecular	machine.	We	use	chemistry,	we	synthesize	them,	we	hope	that	at	some	

point	they	will	assemble,	much	like	the	Terminator.	The	truth	is,	however,	we	probably	

have	to	somehow	manipulate	them.	So	what	we	do	is	assemble	them	bottom-up,	but	

we still need a way to assemble these machines into functional contraptions. So what 

I want to bring to your attention -- what we think is the third way of doing it.

Many	things	are	started	by	a	random	observation.	Several	years	ago,	it	was	noted	

that if you stick material covered by an amorphous version of the material into the 

electron	microscope,	the	electron	beam	can	 induce	the	crystallization	of	the	mate-

rial.	While	it	does	it,	we	can	actually	observe	it	with	atomic	resolution.	Notice,	when	

we	talk	about	atomic	fabrication	we	come	up	with	the	requirement	that	at	the	atomic	

level	 there	 should	 be	 feedback	 that	 should	 be	 correctable.	 In	 this	 case,	 unlike	 mo-

lecular	machines,	and	much	easier	than	with	STM,	we	get	atomic	resolution	for	free.	

That is what electron microscopes do.

Three	years	ago,	we	used	an	atomic	force	microscope	(AFM)	to	draw	things	on	the	

surface;	we	wrote	the	logo	of	the	Department	of	Energy,	and	also	the	logo	of	(the	Ger-

man	band)	Rammstein,	and	my	colleagues	can	still	not	forgive	me	for	this	because	

they	think	it	is	not	music.	What	we	can	do	is	take	the	AFM	controller	electronics,	and	

connect	them	to	the	electron	microscope,	which	is	a	really	expensive	piece	of	equip-

ment,	which	is	really	not	designed	for	being	controlled.	But	we	have	done	it,	and	it	

works.

This	is	an	example	of	the	structure,	which	is	written	in	the	amorphous	material	in	

letters	that	are	basically	ten	atomic	forms	around.	If	you	have	done	it	once,	it	makes	

sense	to	do	it	twice,	so	we	incorporated	helium	atom	and	liquid	sources	so	we	can	

draw	from	gases	and	liquid	phase.
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The	question	 is,	what	can	be	done	 in	the	future?	We	have	observed	--	both	our	

group and our colleagues worldwide -- that actually an electron beam can produce 

a	tremendous	amount	of	controlled	modi昀椀cation	of	a	surface.	Three	years	ago,	we	

were able to burn holes in two-dimensional materials and observe how the materi-

als	reconstruct	into	a	di昀昀erent	crystalline	phase.	Also	two	years	ago,	we	were	able	to	

observe how a single interstitial atom is basically kicked by the electron beam inside 

the lattice so we can move it where it wants to go. We were able to observe how the 

oxygen vacancies inside the solid order to form the grain boundary planes.

The	question	that	I	bring	to	your	attention	is,	can	we	take	the	electron	beam	control	

and	do	the	same	thing	that	Don	Eigler	did	25	years	ago,	but	do	the	same	thing	in	the	

bulk,	not	on	the	surface?	This	is	the	whole	idea	of	the	atomic	forge	--	use	the	electron	

microscope	not	as	an	observational	control,	but	as	a	tool	to	control	matter.	I’ve	shown	

you	that	we	can	do	this	with	small	modi昀椀cations.	Now	we	just	need	to	learn	to	control	

it.	This	is	where	I	believe	that	AI	is	absolutely	essential,	for	very	simple	reasons.	First	

of	all,	when	you	form	the	subatomic	beam,	you	use	machine	learning	in	order	to	use	

aberration correction. The aberration corrected microscope appeared ten years ago 

because	computers	allowed	to	tune	the	64	elements	mathematically,	and	not	do	it	

by hand. That is the only reason why it was not done 30 years ago. It generates large 

volumes	of	data,	in	some	cases	as	much	data	as	the	large	hadron	supercollider.	This	

data controls the information of the solid.

An	 important	 question	 is,	 if	 this	 one	 machine	 is	 sustainable,	 can	 we	 scale	 it	 up?	

There are hundreds of thousands of STEM platforms over the world that are not really 

used,	so	if	it	works,	we	can	scale	up	really	fast.

The	AI	needs	here	are	really	straightforward.	First	of	all,	we	need	to	do	the	librar-

ies of geometric structures of atomic level radiation damage. So we need to build the 

libraries	of	cause	and	e昀昀ects	for	speci昀椀c	structures.	Ideally,	we	want	to	do	it	on	the	

昀氀y.	We	need	to	have	the	AI	controls	of	position	and	intensity,	and	what	we	will	get	is	

atomic fabrication.
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“Flexible	metallic	nanowires	with	self-adaptive	contacts	to	semiconducting	tran-

sition-metal	dichalcogenide	monolayers”	J	Lin	et	al.	Nature	Nanotechnology	9,	436–

442	(28	April	2014)	doi:10.1038/nnano.2014.81.	

http://www.nature.com/nnano/journal/v9/n6/full/nnano.2014.81.html
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“Atomic-Level	Sculpting	of	Crystalline	Oxides:	Toward	Bulk	Nanofabrication	with	

Single	Atomic	Plane	Precision”		S	Jesse	et	al.	Small	11,	5895–5900	(19	October	2015)

DOI:	10.1002/smll.201502048

http://onlinelibrary.wiley.com/doi/10.1002/smll.201502048/abstract

“Paving	the	way	to	nanoionics:	atomic	origin	of	barriers	for	ionic	transport	through	

interfaces”	 MA	 Frechero	 et	 al.	 Scienti昀椀c	 Reports	 5,	 17229	 (17	 December	 2015)	

doi:10.1038/srep17229.:	

“Directing	 Matter:	 Towards	 Atomic	 Scale	 3D	 Nanofabrication”	 S	 Jesse	 et	 al.	 ACS	

Nano,	10,	5600–5618	(May	16,	2016).								DOI:	10.1021/acsnano.6b02489	

“Dynamic	scan	control	in	STEM:	spiral	scans”	Sang,	X.,	Lupini,	A.R.,	Unocic,	R.R.	et	al.	

Advanced Structural and Chemical Imaging 2: 6 pp 1-8 (13 June 2016)

DOI:	10.1186/s40679-016-0020-3
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Team members:		Aaron	Virshup,	Neal	McBurnett,	Bruce	Smith,	Jim	Lewis,	

Lauren	Barghout,	Ruiting	Lian,	and	others

PRESENTATION	By	AARON	VIRSHUP	

	 	 	 	 	 	 											https://youtu.be/BFeRxWxlIz0

PROPOSAL

To	 collaborate	 on	 nanoscience,	 humans	 and	 arti昀椀cial	 intelligences	 need	 a	 com-

mon language. We will develop a suite of data formats that can relate molecular rep-

resentations	to	experimental	data,	physical	properties,	synthesis	pathways,	human	

cell	assay	data,	and	new	data	types	yet	to	be	dreamt	of.

We	are	already	working	with	practitioners	at	the	University	of	California	San	Diego	

(UCSD)	Memorial	Sloan	Kettering	Cancer	Center	(MSKCC),	Merck,	and	Autodesk,	and	

using	lessons	learned	from	legacy	formats	such	as	PDB,	mmCIF,	and	CML.

This	project	builds	the	digital	infrastructure	that	allows	experts	pursuing	nanotech,	

via	multiple	paths,	to	bring	digital	control	to	physical	matter.

Edit: This project to facilitate the sharing of nanotechnology-related data among 

nanotechnology	researchers,	machine	learning	experts	and	other	interested	parties	

was	placed	on	Github	on	October	27,	2016:	

Project 4:

Data standards for Collaborative Nanoscience and 

AI

https://youtu.be/BFeRxWxlIz0


https://github.com/alchemistry/fileformat/blob/master/ai-nanotech-foresight-

project.md 

Transcript 

I	think	one	of	the	most	interesting	things	we’ve	seen	over	the	past	few	days	is	that	

everyone	here	speaks	slightly	di昀昀erent	languages.	What	this	project	proposes	to	do	

is	to	昀椀gure	out	how	we	are	all	going	to	communicate,	both	as	researchers	and	with	

our software.

We	 can	 start	 thinking	 about	 all	 of	 the	 di昀昀erent	 regimes	 that	 really	 go	 into	 nano-

science	—	things	like	small	molecules,	like	proteins,	like	nanoparticles	and	surfaces.	

We	have	a	lot	of	researchers	here	who	focus	on	slightly	di昀昀erent	parts	of	each	one	

of	these	problems,	and	oftentimes	have	overlaps	between	these	di昀昀erent	problems.	

As	we	start	to	look	out	at	the	implications	of	their	work,	the	people	they	are	talking	

to,	and	the	research	they	are	connecting	to	in	the	broader	world,	we	can	start	look-

ing	several	overlaps	through	to	much	bigger	concepts	like	DNA	origami,	or	how	cells	

work,	etc.	

The	question	is,	how	do	we	have	昀椀le	formats	that	let	us	easily	look	at	all	of	these	

systems in the level of representation that a given researcher actually wants to look 

at,	but	without	losing	all	the	data	that	the	people	looking	at	the	smallest	scales	want	

to	look	at,	too?What	we	are	really	here	to	do	is	昀椀gure	out,	how	do	we	make	this	all	

accessible	to	people	doing	AI	and	learning,	and	how	do	we	make	it	readable	by	both	

the	AI	software	and	the	practitioners?

Our proposal is to build a common language for computational nanoscience. This 

would	 involve	 an	 ecosystem	 of	 well-de昀椀ned,	 unambiguous	 昀椀le	 formats,	 one	 that	 is	

readable	by	scientists	from	di昀昀erent	domains,	both	by	themselves	and	with	their	soft-

ware	packages,	and	most	importantly,	one	that	is	readable	by	AI	software	and	can	be	

understood and parsed by AI researchers.

I	am	going	to	zoom	in	quickly	and	look	at	one	of	the	overlaps	that	comes	up	in	this	

昀椀eld	a	lot,	which	is	the	overlap	between	small	molecules	and	biological	proteins.	The	

problem	here	is	that	the	data	formats		we	have	now	are	not	extensible,		are	unlinkable,	

most	of	them	come	from	ancient	Fortran	codes,	and	many	of	them	were	de昀椀ned	by	a	

graduate	student	a	number	of	years	ago.	We	sometimes	actually	have	di昀케culty	inter-

preting the data unambiguously.
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We are thinking of solving this problem with an already existing collaboration. 

As	 an	 example,	 running	 a	 very	 quick	 quantum	 chemistry	 calculation	 (of	 a	 benzene	

molecule)	produces	data	in	a	few	di昀昀erent	ways:	a	2-dimensional	chemical	graph,	a	

3-dimensional	representation,	a	bunch	of	molecular	orbital	information,	and	a	large	

amount	of	numerical	data,	such	as	the	overlap	matrix,	which	corresponds	to,	here,	a	

70	by	70	array	of	昀氀oating	point	decimal	numbers.	How	do	we	store	these	results	 in	

such	a	way	that	someone	who	wants	to	look	at	it	in	2D	can	look	at	it,	someone	who	

wants	the	numbers	can	look	at	it,	and	someone	who	wants	to	look	at	orbitals	can	look	

at	it?	Here	are	the	problems	with	some	of	the	current	昀椀le	formats:

Tripos	 Sybyl	 MOL2	 chemical	 modeller	 input	 昀椀le	 (MOL2):	 you	 are	 going	
to	 have	 to	 write	 a	 parser	 for	 that;	 it	 doesn’t	 look	 anything	 like	 Extensible	
Markup	Language	(XML)	or	JavaScript	Object	Notation	(JSON).	It	has	a	lot	
of	information,	but	certainly	nothing	quantum	chemical.

PDB:	does	not	store	bond	orders	and	does	a	fairly	lousy	job	of	describing	
atoms.

XYZ: good because at least it is unambiguous — list of atoms and their x, y, 

and z coordinates. however, there is nothing here that stores the data that 

we need to communicate with each other.

What	we	are	proposing	to	do	is	to	start	looking	into	modern,	hierarchical	data	stor-

age	—	things	like	JSON,	that	stores	all	of	this:	stores	the	molecular	topology,	stores	its	

name,	stores	its	provenance	(tells	us	where	it	came	from),	and	stores	all	the	numerical	

data that certain researchers might need — things like the calculated electronic wave 

function,	all	of	the	orbitals	and	their	overlap	matrix,	and	all	of	this	in	an	easy	to	parse	

manner.	We	have	an	existing	collaboration,	and	this	is	our	goal:	昀椀le	formats	that	cover	

this space.
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References:

Current	related	e昀昀orts:

 Mosaic: https://github.com/mosaic-data-model

 H5MD: http://nongnu.org/h5md/index.html

 AiiDA: http://www.aiida.net/docs/

An incomplete list of popular formats: 

 https://en.wikipedia.org/wiki/Chemical_昀椀le_format

Data:

This format should encode data from:

	 Structural	databases	(PDB,	Materials	Genome)

	 Mechanics	codes	(ReaxFF,	OpenMM,	LAMMPS)

	 Quantum	codes	(Gaussian,	Quantum	Espresso)

	 Informatics	codes	(OpenEye,	RDKit)

Resources:

Existing informal computational drug discovery collaboration: 

http://github.com/alchemistry/昀椀leformat

woRkshop Results

28 “AI for ScIentIfIc ProgreSS WorkShoP”



29 “AI for ScIentIfIc ProgreSS WorkShoP”

woRkshop Results

Team members:		Don	Gilmore,	Max	Sims,	Tad	Hogg,	Angela	Morente	Cheng,	Si-

Ping	Han,	Farhan	Malik,	and	others	

PRESENTATION	By	MOSHE	LOOKS	AND	SI-PING	HAN

	 	 	 	 	 	 							https://youtu.be/auoL2UMFmdA

PROPOSAL

Given	a	macroscale	design	speci昀椀cation,	e.g.,	an	application-speci昀椀c	integrated	

circuit	(ASIC)	for	matrix	multiplication,	use	AI	to	create	a	plan	(sequence	of	well-de-

昀椀ned	steps)	that	constructs	a	functionally	equivalent	nanoscale	object.	Applications	

include	accelerated	neural	networks,	 faster	memory,	and	central	processing	units	

(CPUs).	By	working	on	the	nanoscale,	we	can	design	and	construct	lower	power	and	

faster	functional	equivalents	that	initially	complement	and	eventually	replace	their	

macroscale	equivalents.	On	the	AI	side,	we	will	formulate	the	problem	as	translation	

subject	to	constraints	(minimize	cost,	number	of	steps,	reversibility,	etc.),	and	solve	

using	program	induction,	planning,	and	neural	reinforcement	learning.

             

Transcript 

Moshe: I am going to talk about automated design of nanosystems and how we 

are going to provide miniaturization as a service. 

Project 5:

miniaturization as a Service (mAAS)

https://youtu.be/auoL2UMFmdA


Our mission is to accelerate the transition going from the world of macro scale 

components	─	big	circuits,	CPUs,	RAM	─	and	make	them	at	the	nanoscale.	The	prob-

lem	is	that	while	there	are	multiple	bene昀椀ts	of	doings	things	at	the	nanoscale,	the	

design	and	manufacturing	principles	are	totally	di昀昀erent.	you	can’t	just	shrink	a	

macroscale	design.	It	will	not	work	because	the	physics	are	totally	di昀昀erent.	Even	if	

you	could	just	shrink	it	and	have	it	magically	work,	we	could	not	build	those	things.	

So	we	need	a	way	of	going	from	a	macroscale	design	to	an	actual	procedure,	a	se-

quence	of	elementary	operations	that	we	know	how	to	do	that	lead	to	a	functionally	

equivalent	nanoscale	object.

The approach that we are going to take is to treat this as a machine learning task. 

We	will	use	AI	to	translate	a	given	macroscale	design,	which	includes	a	full	func-

tional	input-output	speci昀椀cation	of	the	behavior	that	we	want,	along	with	constraints	

on	the	昀椀nal	solution,	such	as	the	number	of	steps,		the	power	consumption,	the	

amount	of	compute	time,	etc,.	to	create	an	object	that	is	functionally	equivalent	at	

the nanoscale.

On	the	AI	side,	algorithmically,	we	are	going	to	need	to	take	a	hybrid	approach.	To		

establish	a	correspondence	between	macro-	and	microscale,	we	are	going	to	need	

to	start	out	with	some	kind	of	training	data:	macroscale	designs,	and	then	sequenc-

es of steps that we can take at the nanoscale which will allow us to build a functional 

equivalent.

Once	we	have	a	few	of	these,	we	can	use	them	to	learn	a	sequence-to-sequence	

model,	or	a	variant	thereof,	which	is	the	standard	framework	for	translation	prob-

lems. The utility of having a model like this is that even if the results are not very 

good,	we	can	run	inference	on	it	very	quickly,	and	that	will	serve	as	a	starting	point	

at	which	we	can	apply	more	computationally	expensive	methods,	such	as	program	

induction to take large steps and transform designs in creative ways to exploit the 

unique	physics	of	the	nanoscale	to	create	machines	that	are	functionally	equivalent,	

but	perform	that	function	in	a	radically	di昀昀erent	way.

Finally,	we	are	going	to	include	classical	planning,	based	on	forward	and	back-

ward	chaining.	If	there	is	a	design	from	program	induction	that	is	almost	correct,	you	

can	use	planning	to	exhaustively	search	small	subspaces	in	order	to	昀椀nd	the	exact	

sequence	of	steps	that	you	need	to	get	functional	equivalence.

What	is	interesting	about	this	is	that	if	we	can	get	it	to	work,	it	can	train	itself	of-

昀氀ine;	it	can	bootstrap.	There	are	many	more	examples	of	macroscale	objects	than	
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microscale,	so	if	we	have	a	large	library	of	macroscale	objects,	we	can	be	churning	

away	and	searching	for	translations	into	the	microscale,	and	use	this	to	improve	the	

model better and better.

On	the	nanoscale	side,	we	have	some	suggestive	proofs	of	concept.	This	a	tool,	

“caDNAno”.	This	screenshot	(Illustration	1)	shows	what	the	output	of	the	process	

might look like. This might be a way for people to inspect the models that are gener-

ated.

Si-Ping Han: I will talk about examples of actual molecular manufacturing.
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These are some examples of a class of nanostructures called DNA origami. There 

are	2D	examples	and	3D	examples,	and	also	today	we	can	build	larger	complexes	of	

DNA	origami.	The	way	that	these	structures	are	made	is	that	a	large	DNA	strand,	an	

elongated	DNA	strand,	is	held	into	this	shape	by	several	hundred	small	DNA	strands	

that all come together in a salt solution and self-assemble. When we specify the 

nanoscale	designs,	the	idealized	example	of	the	nanoscale	design	is	very	di昀昀erent	

from	the	actual	shape	that	you	get	in	solution,	because	at	this	scale,	the	structures	

are actually dominated by the very strong interactions of the molecular scale forces. 

We	can	make	quite	sophisticated	types	of	DNA	structures,	but	it	is	also	true	that	

assembly	is	error	prone.	For	example,	assembling	a	large	2D	array	of	DNA	origami	

tiles	should	produce	a	uniform	grid,	but	instead	errors	and	incomplete	assembly	can	

happen	at	the	edges.	In	any	given	system,	we	will	have	to	take	all	of	these	e昀昀ects	

into	account	and	incorporated	in	physics-based	models,	including	redundancies	

and errors and translating them to the nanoscale. 

References:

Proof	 of	 concept	 for	 nanoscale	 design:	 “Designer	 Nanoscale	 DNA	 Assemblies	

Programmed	From	The	Top	Down”	R	Veneziano,	S	Ratanalert,	K	Zhang,	F	Zhang,	H	

yan,	W	Chiu,	M	Bathe.	Science	352,	1534	(24	Jun	2016)	DOI:	10.1126/science.aaf4388

http://science.sciencemag.org/content/352/6293/1534	-	

Standard	neural	translation	model:	“Neural	Machine	Translation	By	Jointly	Learn-

ing	To	Align	And	Translate”	D	Bahdanau,	K	Cho,	y	Bengio.	Published	as	a	conference	

paper	at	ICLR	2015.

https://arxiv.org/pdf/1409.0473.pdf		(19	May	2016)

 

Neural	module	architectures:	“Neural	Module	Networks”	J	Andreas,	M	Rohrbach,	

T	Darrell,	D	Klein.

http://arxiv.org/pdf/1511.02799v3.pdf		(1	June	2016)

Program	induction:	“Competent	Program	Evolution”	Moshe	Looks.	metacog.org/

main.pdf (December 2006)

 

Proof	 of	 concept	 application	 of	 classic	 planning	 to	 similar	 domain:	 “Pattern	 De-

composition with Complex Combinatorial Constraints: Application to Materials Dis-

covery”	S	Ermon,	R	Le	Bras,	SK	Suram,	JM	Gregoire,	CP	Gomes,	B	Selman,	RB	van	

Dover.
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https://arxiv.org/pdf/1411.7441.pdf	(27	Nov.	2014)

“Folding	DNA	into	Twisted	and	Curved	Nanoscale	Shapes”	H	Dietz,	SM	Douglas,	

WM	Shih.	Science	325:	725-730	(7	August	2009).	DOI:	10.1126/science.1174251

http://bionano.physik.tu-muenchen.de/Source/curvature_dietz_et_al.pdf

“Self-assembly	of	a	nanoscale	DNA	box	with	a	controllable	lid”	ES	Andersen,	M	

Dong,	MM	Nielsen,	K	Jahn,	R	Subramani,	W	Mamdouh,	MM	Golas,	B	Sander,	H	Stark,	

CLP	Oliveira,	JS	Pedersen,	V	Birkedal,	F	Besenbacher,	KV	Gothelf,	J	Kjems.	Nature	

459:	73-76	(7	May	2009)	doi:10.1038/nature07971	

https://www.tu-braunschweig.de/Medien-DB/pci/_Tinnefeld/nature07971.pdf

“Programmable	molecular	recognition	based	on	the	geometry	of	DNA	nanostruc-

tures”	Sungwook	Woo,	PWK	Rothemund.	Nature	Chemistry	3:	620–627	(10	July	2011)	

DOI:	10.1038/NCHEM.1070	

http://www.dna.caltech.edu/Papers/stacking-bonds2011.pdf

“Crystalline	 Two-Dimensional	 DNA-Origami	 Arrays”	 W	 Liu,	 H	 Zhong,	 R	 Wang,	

N	 C	 Seeman.	 Angew.	 Chem.	 Int.	 Ed.	 50,	 264–267	 (January	 2011)	 	 	 	 DOI:	 10.1002/

anie.201005911

http://ww2.chemistry.gatech.edu/~lw26/bCourse_Information/DNA_technology/

papers/seeman_orgami.pdf

Resources available

https://materialsproject.org/,	http://cadnano.org/,	http://cando-dna-origami.org/
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Team members:		James	Gimzewski,	Reto	Stamm,	Robert	Freitas,	Paul	Cherukuri,	

Joe	Lyding,	and	others

PROPOSAL

Idea: Design	a	bottom-up,	3D	printer	that	can	programmably	construct	an	atomi-

cally precise macroscale object with built in error correction. 

Impact: Atomically precise assembly will lead to the fabrication of new nanoscale 

devices and materials that will have major impact on society. 

Approach: Fabricating an atomic scale 3D printer by combining an interferometer 

stage with a scanning tunnelling microscope (STM) to rapidly assemble individual 

atoms into layers and then layer-by-layer.

Hardware: 3D Printer Construction

Ultra	High	Vacuum	STM
Interferometer guided piezo controlled stage

Software: AI Controlled Error Correction

Slicing the model into single atom layers

Deposition/process	control

Project 6:

Nanoscale 3D Printer with error correction









PRESENTATION	By	JOE	LyDING

	 	 	 	 	 	 							https://youtu.be/QeOM68gZNLy			

https://youtu.be/QeOM68gZNLY   


Image recognition to check single atom stampable layer

Error correction - controlling the bumping out of place atoms into place 

with the STM before stamping

Post-deposition single atom doping

Actuator control to do the actual stamping

Products

New transistor technology

NEMS - Nanoelectric mechanical systems 

Catalytic surfaces

Mechanically strong low density structures

Platforms for self-assembling features

Nano imprint templates

Advantages

Feasible today

Reducing	cost	for	atomically	precise	surfaces	and	3D	shapes
Rapid	fabrication	of	nanoscale	devices	with	atomically	precise	structure

Proposed budget: As	 a	 full-time	 project	 this	 project	 requires	 $3-5	 million	 for	 3	

years to 

support 3 people 

500k for the STM

500k for the interferometer stage
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Figure 1

Use	a	moveable type approach to 3D print 
atomically precise objects.

Make	“molds”	for	atomically	precise	layers	
using an STM.
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Figure 2

Use	STM	manipulation	to	make	an	atomi-
cally precise template.

Figure 3

Remove	an	atom.

Figure 4

Remove	more	atoms	to	create	an	atomi-
cally precise mold.
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Figure 6

Material to be transferred self-assembles 

into mold to atomic precision.

Figure 5

A lower resolution cartoon showing a 

second layer of atoms removed to create 

an atomically precise mold

Figure 7

Approaching with a stamp to remove the 

material from the mold.
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Figure 8

Transferring the two atomic layers from 

the mold to the stamp.

Transcript 

Our idea is a 3D printer with error correction for atomically precise macro objects. 

We	want	to	leverage	a	couple	of	techniques:	one	is	scanning	probe	microscopy	for	

atomic-scale	fabrication,	but	also	some	of	the	semiconductor	industry	techniques.	

With	the	interferometry	driven	servo	stages	for	chip	manufacture,	you	can	actually	

process	10	chips	per	second	with	x,	y,	z	precision	to	1.6	nm.	That	is	one	of	the	things	

we will be utilizing.

We want to create the atomically precise template once and then use it repeat-

edly.	To	do	that,	we	will	use	an	STM.	I	will	not	go	through	the	details	of	that	and	how	

the	patterning	works,	but	here	is	a	cartoon	where	we	would	take	a	surface,	say	an	

atomically clean silicon surface. We come in with an STM tip and pluck out an atom. 

There are publications where that has been done. We then repeat that process to 

clear out an area.

We	might	hydrogen-passivate	the	surface,	and	then	use	selective	chemistry	to	

put the material that we want to transfer into that hole. It would self-assemble into 

that	hole	with	atomic	precision.	Then	we	would	come	in	with	a	stamp,	and	transfer	

to	that	stamp.	We	could	repeat	that	process,	transferring	the	next	layer	to	a	stamp,	

etc.	you	could	have	di昀昀erently	shaped	pieces	that	you	are	going	to	transfer.	They	are	

all	one	atomic	layer		thin,	so	you	could	transfer	them	sequentially	and	build	objects	

like	a	3D	printer,	where	each	layer	determines	how	the	structure	evolves.	Another	

thing	you	could	is,	if	you	had	a	second	type	of	material,	a	di昀昀erent	material,	you	



woRkshop Results

39 “AI for ScIentIfIc ProgreSS WorkShoP”

could	say,	“I	am	going	to	build	that	into	the	structure”,	and	then	you	might	be	able	

to	use	that	as	a	release	layer;	you	might	be	able	to	subsequently	remove	it.	So	now	

what	you’ve	done	is	to	open	up	the	opportunity	to	make	a	nanoelectromechanical	

systems (NEMS) type of actuator.

you	might	have	the	scanning	probe	a	millimeter	away	from	where	the	transfer	is	

going,	so	you	go	back	and	forth	between	them	because	you	will	need	to	do	some	

error	correction.	you	will	need	to	verify,	“Is	the	stamp	still	accurate?	Do	I	need	to	put	

an atom back or take an atom out because of an error that has occurred during the 

processing?”

We	would	use	o昀昀-the-shelf	technology	in	terms	of	the	UHV	STM	and	interferom-

etry-driven	servo	stages.	As	I	said,	the	chip	manufacturers	can	move	a	centimeter	

with	1.6	nanometer	x,	y,	z	accuracy	10	times	a	second.	That	is	including	the	exposure	

step,	so	it	is	actually	faster.	We	envision	that	if	we	are	moving	a	millimeter,	we	might	

be able to do this whole process 100 times a second. The molecules or atoms that 

are	going	to	be	transferred	would	be	introduced	in	the	vapor	phase,	would	rapidly	

self-assemble	into	that	little	pit	that	we	made	into	the	surface,	and	then	the	stamp	

would come in and take it up.

There are a lot of interesting opportunities for AI control and error correction: 

building	a	model,	deposition,	etc.	It	is	a	system,	like	a	self-driving	car,	where	you	

have to account for lots of things going on at the same time. There is a lot of image 

recognition	error	correction.	For	example,	we	analyze	the	stamp	to	see	if	it	is	still	

atomically	precise.	If	it	is	not,	we	have	to	昀椀x	it.

What	can	you	make	with	this	thing?	you	could	make	new	transistor	technology,	

like	atomically	precise	FinFETs.	If	you	use	release	layers,	you	could	make	objects	

that	could	be	moved.	With	atomic	precision,	you	could	have	electromechanical	

actuators	for	sensors,	or	mechanical	computing	--	a	radiation-hard	computer	would	

just	have	mechanical	switches,	for	example.	Small	switches	operating	at	100	giga-

hertz are pretty interesting. Catalytic surfaces -- you could design surfaces to taste 

for	catalytic	processes.	you	could	make	a	porous	type	of	structure	that	is	mechani-

cally	strong	but	doesn’t	weigh	much.	Nanoimprint	templates	--	you	could	make	

a template that can then be used to emboss very rapidly copies of itself. The one 

thing	that	is	not	on	this	list,	interestingly,	is	that	the	semiconductor	industry	wants	

atomically precise templates so that they can calibrate their lithography systems. 

you	could	make	those.
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Team members:		Rick	Lewis,	Peter	Voss	

PRESENTATION	By	RICK	LEWIS

	 	 	 	 	 	 					https://youtu.be/aZRSs9WTSvM

PROPOSAL

This	 proposal	 concerns	 a	 very	 speci昀椀c	 target	 and	 can	 hardly	 be	 considered	 as	

general	AI	(whatever	that	may	be).		It	should,	however,	be	considered	as	a	small	step	

in the direction of creating a general AI application.

The medical literature is vast and the accumulation of potentially relevant infor-

mation is accelerating. The information is vital to the successful development of safe 

and	e昀昀ective	pharmaceuticals.	In	spite	of	general	criticism	in	the	media	concerning	

overpriced	medications	and	excessive	pro昀椀t,	the	success	of	the	pharmaceutical	in-

dustry	can	be	considered	positive	and	bene昀椀cial.	Human	life	expectancy	has	signi昀椀-

cantly improved during the 20th century and a number of diseases which manifested 

considerable	 morbidity	 or	 were	 uniformly	 fatal	 can	 now	 be	 either	 cured	 or	 signi昀椀-

cantly ameliorated. It is anticipated that this trend will most likely accelerate.

The medical literature is important in several ways:

Project 7:

NLP and General AI
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 https://youtu.be/aZRSs9WTSvM


41 “AI for ScIentIfIc ProgreSS WorkShoP”

woRkshop Results

1.     It serves as a repository of data which may reveal new emerging safety signals.

2.				It	serves	as	a	means	of	benchmarking	anticipated	e昀케cacy.

3.   It serves as a means of identifying potential adverse events which are com-

monly associated with the underlying disease state.

4.   It serves as a means of hypothesis generation concerning possible pathophysi-

ologic	pathways	for	toxicity	or	new	areas	for	possible	e昀케cacious	use.

The	pharmaceutical	industry	is	required	by	regulations	to	review	literature	for	po-

tential	clinical	safety	signals.	In	addition,	during	the	development	of	the	clinical	pro-

tocols,	scienti昀椀c	sta昀昀s	are	often	faced	with	questions	during	protocol	design	which	

require	additional	investigations	of	the	literature.	

The ascertainment of worthwhile information from the literature can be a time-

consuming	 and	 laborious	 process	 which,	 unfortunately,	 is	 often	 repeated	 in	 large	

part because searches are not saved and results are not shared between teams. 

Most companies do not have a centralized repository of literature which is annotated 

and	rapidly	available	to	sta昀昀	through	simple	“natural	language”	searches.	

The	emergence	of	natural	language	processing	and,	in	particular,	the	advances	

in	 arti昀椀cial	 intelligence	 and	 neural	 networks	 provide	 opportunities	 to	 improve	 this	

process.	It	is	anticipated	that	early	progress	will	be	made	by	making	the	acquisition	

and	indexing	of	literature	more	e昀케cient.	Eventually,	it	may	become	possible	to	train	

intelligent machines to provide additional value-added functions.

The most important resources that any knowledge worker has are training and 

time. The repetitive and time-consuming tasks should be made as brief as possible. 

The attached is an example of an exploratory approach to consider for the improve-

ment this valuable process. It time a general AI tool would progress beyond simple 

assistance in identifying and curating the references. 

Data & Resources

For	this	exercise,	a	seemingly	straightforward	question	was	asked	concerning	a	

possible adverse event occurring as the result of a medicinal product. The product 

in	 question	 is	 a	 monoclonal	 antibody	 which	 is	 an	 antagonist	 of	 interleukin-6.	 The	

concern	rests	with	exposing	patients	who	have	been	infected	with	hepatitis	B	to	this	

medication which is an immunosuppressive. It is known that severe and often fatal 

(50% mortality) reactivation of the hepatitis can occur as a result of treatment with  
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some	immunosuppressive	agents	(e.g.,	rituximab).	

The	questions	is:		I	am	hepatitis	B	core	antibody	positive	but	HBsAg	negative.	I	will	

receive	tocilizumab	for	rheumatoid	arthritis,	should	I	take	antiviral	prophylaxis?

To	 answer	 this	 question,	 the	 Embase	 database	 was	 searched	 for	 the	 following	

terms:	tocilizumab,	hepatitis	B,	and	prophylaxis.	Twenty	unique	references	were	cap-

tured. 

The	review	was	then	undertaken	by	two	di昀昀erent	methods:

Adobe Acrobat

1.	The	identi昀椀ed	Embase	abstracts	were	downloaded	as	a	text	昀椀le	and	then	print-

ed using Adobe Acrobat.

2.	 Using	 Adde	 Acrobat	 and	 its	 redaction	 function,	 three	 key	 terms	 were	 speci-

昀椀ed	and	assigned	di昀昀erent	colors	throughout	the	document.	This	makes	it	relatively	

straight-forward to identify each individual abstract as to its informational content.

				a.	Hepatitis	B	(yellow)

    b. Tocilizumab (Purple)

				c.	Prophylaxis	(Red)

3.	Each	abstract	was	reviewed	and	assigned	a	signi昀椀cance	value	grading	its	use-

fulness	in	answering	the	question.	The	scoring	is	de昀椀ned	as	0	-	10.	For	example:

    a. 0 = no value

    b. 4 = Provides valuable information

	 	 	c.	10	=	Answers	the	question	fully	(includes	references	which	concerning	pro-

spective	trials	designed	to	speci昀椀cally	address	the	question).

4. The number of hits of each of the terms of interest was counted and recorded.

5.	A	very	simple	analysis	of	the	correlation	between	the	“signi昀椀cance	value”	and	

the number of hits (total and by individual term) was employed.

Linguamatics I2E.

The	 same	 text	 昀椀le	 which	 generated	 the	 Adde	 document	 was	 imported	 into	 I2E	
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and	indexed.	It	was	then	queried	using	the	I2E	software.

Results	are	available	on	request.	

Transcript 

We want to develop better text mining tools. They really are necessary to search 

really large datasets. The way that we have done literature in the past just is not very 

e昀昀ective.	I	deal	a	lot	with	medical	literature;	it	is	very	important	for	signal	detection,	

and	you	get	information	concerning	e昀케cacy	of	compounds.	you	can	look	for	adverse	

events	 that	 occur	 in	 the	 setting	 of	 the	 disease.	 That	 last	 part	 is	 very	 important,	 be-

cause otherwise they may just be background noise. Another thing is that it can help 

you	with	hypothesis	generation.	And	we	are	required	by	law	to	do	this.	 It	has	to	be	

done	in	a	methodical	manner.	The	basic	reality	is	that	time	is	precious.	I	don’t	have	

enough	of	it.	The	only	way	that	I	can	improve	my	productivity	is	by	getting	smarter,	

learning	new	skills,	and	using	improved	tools.	Right	now,	the	tools	suck!

I	want	to	ask	a	speci昀椀c	question	[of	the	literature].	I	have	Hepatitis	B	core	antibody.	

(Some	of	you	have	probably	heard	some	talk	about	this.)	But	I	am	hepatitis	B	antigen	

(HBsAg)	 negative.	 That	 means	 that	 I	 have	 suppressed	 my	 infection	 completely.	 No	

symptoms.	Zippo!	But	I	am	going	to	get	this	immunosuppressive	agent,	called	toci-

lizumab.	Do	I	need	to	take	antiviral	prophylaxis?	Because	when	you	are	on	an	immu-

nosuppressive,	when	you	have	been	exposed	to	Hepatitis	B,	you	can	reactivate	the	

virus,	and	if	you	reactivate,	you	have	a	50%	chance	of	death.	So	it	is	kind	of	a	big	deal.

The	methods	that	I	use	to	search	the	literature:	I	use	Embase	[https://www.elsevier.

com/solutions/embase-biomedical-research]	a	lot;	it	has	tons	of	literature.	I	created	

a	CVS	昀椀le,	put	 it	 into	a	relational	data	model,	and	from	that	you	can	create	queries,	

base	reports,	outputs,	and	that	kind	of	stu昀昀.	I	also	went	into	the	text	昀椀les	and	created	

what	I	call	the	Adobe	Process.	 It	 is	really	conceptualization.	Then,	Linguamatics	I2E	

[https://www.linguamatics.com/]	is	a	Natural	Language	Processing	(NLP)	text	mining	

program that I have access to.

The	query	process	and	output	from	Embase	shows	many	hits	for	individual	search	

terms,	like	tocilizumab,	hepatitis	B,	and	prophylaxis,	but	searching	for	combinations	of	

those	terms	greatly	reduces	the	number	of	hits.	That	is	really	obvious;	everyone	does	

that.	This	 is	really	an	explanation	of	what	Embase	 is,	what	Paradox	does	 [relational	

database	management	system	<https://en.wikipedia.org/wiki/Paradox_(database)>].
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I use Adobe Acrobat Professional for this because it has a redaction function so 

you can go through even a very large document and highlight in minutes to seconds 

any	 terms	 that	 you	 are	 interested	 in.	 For	 our	 purposes,	 hepatitis	 B	 is	 yellow,	 tocili-

zumab	purple,	and				prophylaxis	is	red.	I	also	use	a	usefulness	scale.	Did	I	think	the	

abstract	had	any	value	when	I	went	through	and	reviewed	it?

That	is	what	the	output	looks	like	in	Acrobat.	There	were	10	hits	on	tocilizumab,	22	

on	hepatitis	B,	4	on	prophylaxis,	for	a	total	of	36	hits.	This	 is	what	I2E	looks	like.	 I2E	

does	not	do	hits,	but	it	is	really	good	at	connecting	dots.	Out	of	the	above	hits,	I	found	

two	that	I	thought	were	somewhat	valuable.	A	usefulness	score	of	6	is	not	bad,	but	it	

is not great.

Is there any correlation with these results between the Adobe Process and using 

I2E?	The	Acrobat	process	identi昀椀ed	20	abstracts,	of	which	two	were	somewhat	valu-

able,	I2E	identi昀椀ed	9	abstracts	of	which	2	were	somewhat	valuable.	What	I	really	want	

to stress is time. Creating the corpus and reviewing the data with the Acrobat method: 

2	hours	50	minutes.	With	Embase:	21	minutes.	Creation	of	I2E	index	for	query	search-

ing	 5	 minutes.	 Creating	 the	 I2E	 query:	 1	 minute	 32	 seconds.	 Running	 the	 I2E	 query:	

6.48 seconds. The results of I2E are pretty close to the results of the Acrobat process.
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Team members:		Natalia	Díaz	Rodríguez,	yad	Faeq,	Bogdana	Rakova,	and	others

PROPOSAL

In	the	general	reinforcement	learning	setting,	an	agent	needs	to	learn	an	optimal	

policy	 for	 achieving	 goals	 in	 an	 environment,	 while	 general	 purpose	 agents	 need	

to exhibit this ability across a diverse range of environments. Our aim is to design a 

recurrent	neural	network	architecture	that	uses	a	hierarchy	of	LSTM	units,	an	exter-

nal	memory,	and	learned	compositions	of	modules	to	achieve	transfer	learning	and	

avoid catastrophic forgetting. This functionality could be applied to the design and 

control of nanoscale systems.

Transcript 

As	the	title	says,	we	are	learning	to	act	with	recurrent	neural	networks.	In	the	

current	space	for	reinforcement	learning,	an	agent	learns	to	adapt	to	a	cyclic	envi-

Project 8:

Learning to act with recurrent neural networks

PRESENTATION	By	yAD	FAEQ

https://youtu.be/l-V5Iy2oSyg

https://youtu.be/l-V5Iy2oSyg
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ronment.	So,	we	have	an	agent	that	learns	to	adapt	to	a	speci昀椀c	task	that	needs	to	

be	achieved.	However,	a	general	purpose	agent,	in	most	cases	cases	encountered,	

needs	to	generalize	long	enough	to	learn	over	di昀昀erent	environments.	Our	aim	is	to	

design	an	LSTM	network,	an	architecture	that	avoids	catastrophic	forgetting,	and	it	

uses	transfer	learning	to	adapt	to	di昀昀erent	environments.	For	example,	an	agent	that	

will	learn	to	adapt	to	one	environment	will	learn	to	control,	for	example,	a	macro-

scopic scanning control agent. We want to design an architecture that learns to 

adapt	to	the	di昀昀erent	environments,	it	will	rebalance	inputs,	and	achieve	designated	

tasks using transfer learning.

When	you	are	in	a	lab,	some	of	the	experiments	can	be	very	expensive.	If	you	

miss	something	during	scanning,	this	agent	will	assist	the	person	doing	the	scan-

ning to avoid such errors. This will save time and the cost of replicating the experi-

ment.	Other	things	that	would	be	nice	to	have,	since	are	mission	learning	prac-

titioners,	would	be	others	with	additional	expertise,	to	look	over	the	real	world	

applications	of	what	we	are	building,	and	along	the	lines	of	building	such	products,	

one	of	the	most	important	things	is	the	actual	GPU,	the	actual	hardware	that	we	use,	

so we are looking forward in terms of funding to have such hardware provided.

.
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Data & Resources

OpenAI gym for data - https://gym.openai.com/docs

“OpenAI	Gym	is	a	toolkit	for	developing	and	comparing	reinforcement	learning	al-

gorithms.	It	makes	no	assumptions	about	the	structure	of	your	agent,	and	is	compat-

ible	with	any	numerical	computation	library,	such	as	TensorFlow	or	Theano.	you	can	

use	it	from	Python	code,	and	soon	from	other	languages.”

Resources: GPU	instances	from	EC2	for	research,	Titan	X	GPU

https://www.google.com/#q=GPU+instances+from+EC2+for+research%2C+Titan+X+

GPU



“AI	for	Scienti昀椀c	Progress:	Bringing	Digital	Control	to	Physical	Matter,”	was	a	highly	

interactive workshop convened to develop proposals for AI-assisted methods to 

bridge	research	bottlenecks	in	atomic	precision,	re昀氀ecting	Foresight’s	vision	of	a	fu-

ture of synergistic technologies. This report covered the resulting ambitious research 

proposals,	many	of	which	are	now	open	to	collaboration	and	funding.	If	you	are	inter-

ested	in	helping	the	advancement	of	high-impact,	bene昀椀cial	research	like	this,	there	

are several things you can do: get this report in front of the right people to make 

things	happen,	spread	the	word	that	our	most	powerful	lever	to	improve	the	state	

of	the	world	is	novel	technology,	support	Foresight	Institute	to	extend	the	frequency	

and	scale	of	our	e昀昀orts.	Get	in	touch	to	昀椀nd	out	more:	foresight@foresight.org.

Rationale foR the woRkshop
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Background 
Reading08.

The Arti昀椀cial Intelligence Landscape

Beginnings

The	appearance	of	usable	computers	during	the	1950s	a昀昀orded	the	opportunity	

to build and test experimental and theoretical disciplines around theories of intel-

ligence that philosophers had been playing with for more than two millennia. Early 

systems	incorporated	symbolic	logic,	heuristics	to	link	knowledge	and	actions,	and	

theories	of	computation,	probability,	and	knowledge	representation.	The	connections	

among	propositional	logic,	Turing’s	theory	of	computation,	and	the	basic	physiology	

of neurons in the brain led to both the logicist and the connectionist approaches to 

AI. This early work led to a two-month workshop at Dartmouth during the summer 

of	 1956	 for	 those	 interested	 in	 automata	 theory,	 neural	 nets	 (Fig.	 1),	 and	 the	 study	

of	intelligence.	At	this	workshop,	Allen	Newell	and	Herbert	Simon	introduced	Logic	

Theorist,	a	reasoning	program	that	was	able	to	prove	most	of	the	theorems	in	Chap-

ter	2	of	Russell	and	Whitehead’s	Principia	Mathematica.	For	the	next	20	years,	the	

ten	attendees	from	this	workshop,	plus	their	students	and	colleagues	at	Carnegie	

Mellon	University,	MIT,	Stanford	and	IBM,	dominated	the	new	昀椀eld,	which	became	

known	as	arti昀椀cial	intelligence,	from	the	suggestion	of	the	workshop	organizer	John	

McCarthy (2).

.
  “The two main 
traditions in the 
beginning of AI are 
the logicist and 
the connectionist 
approaches to AI.”
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Figure 1 

“An	arti昀椀cial	neural	network	is	an	interconnected	group	of	nodes,	akin	to	the	vast	
network	of	neurons	in	a	brain.	Each	circular	node	represents	an	arti昀椀cial	neuron	and	an	
arrow	represents	a	connection	from	the	output	of	one	neuron	to	the	input	of	another.”
https://commons.wikimedia.org/wiki/File:Arti昀椀cial_Neural_Network.jpg
Image credit:	Author	-	LearnDataSci,	learndatasci.com.	Permission	is	granted	to	share	
and remix copy under the terms of the Creative Commons Attribution-Share Alike 4.0 

International license. 

Early	work	on	theorem	provers,	昀椀rst	order	logic,	problem	solvers,	knowledge	rep-

resentation,	the	invention	of	the	AI	programming	language	Lisp,	time-sharing	com-

puter	systems,	and	neural	networks	eventually	ran	into	problems	as	methods	that	

worked for simple demonstrations failed on more complex real-world problems. For 

example,	lack	of	contextual	knowledge	of	speci昀椀c	domains	led	to	failures,	such	as	

the famous example of the language translation program that translated the English 

sentence	“The	spirit	 is	willing	but	the	昀氀esh	is	weak”	 into	Russian,	and	then	retrans-

lated	it	back	to	English,	giving	the	result	“The	vodka	is	good	but	the	meat	is	rotten.”	

Another	problem	was	“combinatorial	explosion”,	when	a	program	had	to	deal	with	

more than few dozen facts (2). 



A	famous	1969	book,	Perceptrons	by	Marvin	Minsky	and	Seymour	Papert,	showed	

that	certain	simple	neural	networks	(perceptrons,	Fig.	2)	were	not	capable	of	prov-

ing certain logical predicates. Since the book pointed out that the simplest type of 

neural networks that were most popular with researchers at the time had some limi-

tations,	it	discouraged	work	on	neural	networks	for	a	time.	However,	what	was	clear	

was that more complex networks (back-propagation learning algorithms for multi-

layer	 networks)	 could	 compute	 any	 possible	 Boolean	 function.	 This	 book	 pushed	

research	昀椀rst	in	one	direction	and	then	in	another,	a	complex	topic	that	was	explored	

by	a	peer-reviewed	sociological	study	of	scienti昀椀c	development	published	in	1996	

(ref.	2,	3).

BackgRound Reading
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Figure 2

“A	diagram	showing	a	perceptron	updating	its	linear	boundary	as	more	training	examples	
are	added.”	
https://en.wikipedia.org/wiki/Perceptron. 

Image Credit: Elizabeth	Goodspeed.	This	昀椀le	is	licensed	under	the	Creative	Commons	
Attribution-Share Alike 4.0 International license.    

https://commons.wikimedia.org/wiki/File:Perceptron_example.svg
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A fresh breeze for AI

The early approaches described above used only limited knowledge about spe-

ci昀椀c	domains.	More	successful	expert	systems	were	developed	by	using	more	com-

plete	knowledge	bases	for	narrow	knowledge	domains,	such	as	solving	molecular	

structure using information from mass spectrometer experiments. The expertise of 

such knowledge-intensive systems derived from large numbers of special-purpose 

rules. The commercial success of expert systems was followed by renewed work 

on	neural	networks.	Physicists	applied	techniques	of	statistical	mechanics,	used	to	

analyze	large	collections	of	atoms,	to	optimize	large	collections	of	neurons.

Over	 the	 past	 30	 years,	 AI	 programs	 have	 found	 increasing	 success	 with	 com-

plex real-world applications. One example is speech recognition programs based on 

hidden Markov models which use rigorous mathematical theory and training on a 

large	body	of	real	speech	data.	Previously	unthinkable,	some	systems	have	come	to	

surpass humans at performing a narrow set of tasks by acting rationally according to 

laws	of	probability	and	decision	theory,	rather	than	by	imitating	human	experts	(2):	A	

chess-playing program that eventually defeated the world champion human player 

in	1997	(	4),	a	question-answer	program	that	defeated	two	former	champions	of	the	

quiz	 show	 Jeopardy!	 in	 2011	 (5),	 and	 a	 computer	 program	 to	play	 the	 board	 game	

Go	that	defeated	the	world	champion	in	2016	(6).	Other	less	famous,	but	remarkable	

successes of deep neural networks bear resemblance to the way humans process 

information:	Microsoft’s	ResNet	architecture,	which	won	all	 international	image	rec-

ognition	competitions	in	2015,	built	a	neural	net	that	was	~150	layers	deep,	instead	

of	the	common	~8	layers.	The	depth	was	made	possible	by	allowing	the	net	to	skip	

certain	layers	when	not	needed,	using	layers	only	when	needed,	similarly	selective	

to how the human brain operates. 

Another	example	in	this	space	is	Google	Translate’s	zero	shot	translation	that	was	

revealed	in	late	2016.	While	being	trained	to	translate	a	multitude	of	languages,	the	

system	builds	a	body	of	shared	“translation	knowledge”	between	a	multitude	of	lan-

guages.	Surprisingly,	this	translation	knowledge	even	allows	the	system	to	translate	

between a language pair it has not been trained on yet. Whether this common bridge 

representation	classi昀椀es	as	its	own	language,	i.e.	an	“interlingua”	that	is	a	predeces-

sor	 of	 human	 consciousness	 is	 debatable.	 However,	 this	 style	 of	 learning	 at	 least	

resembles human learning and explains why human individuals who are bilingual 

are better at learning new languages because they draw on knowledge of multiple 

languages to learn new ones.
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Narrow AI vs. Arti昀椀cial General Intelligence

An introduction to AI conducted by the AI researchers present at the workshop for 

the	bene昀椀t	of	the	nanotechnologists	urged	for	the	distinction	of	the	terms	Narrow	AI	

and	Arti昀椀cial	General	Intelligence	(AGI),	which	are	often	con昀氀ated	in	media	coverage	

and public discourse. 

While	narrow	AI	systems	are	focused	on	doing	one	speci昀椀c	task	very	well,	often	

better	 than	 a	 human,	 the	 AGI	 Society	 (http://www.agi-society.org/)	 de昀椀nes	 Arti昀椀-

cial	General	Intelligence	as	an	“emerging	昀椀eld	aiming	at	the	building	of	thinking	ma-

chines;	that	 is,	general-purpose	systems	that	can	perform	any	intellectual	task		as	

Figure 3 

Illustration	of	Google’s	zero-shot	learning,	taken	from	Google’s	research	blog.	
https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html
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well as the human mind (and perhaps ultimately well beyond human general intel-

ligence).”	While	success	in	AGI-related	research	lags	behind	success	in	narrow	AI,	it	

will likely render narrow AI research obsolete once achieved. 

Initially,	the	term	“Arti昀椀cial	Intelligence,”	as	coined	by	John	McCarthy,	was	used	to	

mean	Arti昀椀cial	General	Intelligence,	but	as	more	companies	appropriated	the	term	

AI	to	describe	their	narrow	AI	methods,	the	term	AGI	was	introduced	to	distinguish	

the	two.	An	interesting	parallel	exists	to	the	昀椀eld	of	nanotechnology;The	term	nano-

technology initially described atomically precise technology before it got appropri-

ated	by	media	and	industry	to	mean	“very	small”	--	and	the	terms	“atomic	precision”	

and	“molecular	manufacturing”	were	introduced	to	distinguish	the	original	meaning	

of	nanotechnology	from	the	common	use	of	the	word.	The	di昀昀erence	between	cur-

rent	AI	systems	and	an	ultimate	AGI	 is	best	 illustrated	using	the	above	mentioned,	

well-known narrow AI examples of Watson and AlphaGo.

IBM’s	Watson	uses	rule-based	systems	and	symbolic	logic	based	systems,	and	

more	recently,	neural	nets.	Since	neural	nets	need	to	be	trained	on	massive	amounts	

of	data	labeled	by	humans,	each	new	application	requires	doing	something	speci昀椀c	

to	prepare	the	system:	prepare	rules,	collect	and	label	the	data	set,	train	and	retrain,	

etc.	The	main	disadvantage	is	that	Watson’s	AI	is	a	black	box	that	provides	little	in-

sight into how it works. It is not possible to reasonably extract from the system why 

it	produced	the	result	that	it	did.	If	a	speci昀椀c	bug	is	distorting	the	output,	 it	 is	hard	

to	 improve	performance	by	昀椀nding	and	昀椀xing	the	bug	because	most	of	 its	work	 is	

sub-symbolic.	One	needs	to	train	the	system	again	using	a	di昀昀erent	labeled	data	set	

and hope for better results. While there are computer-assisted approaches to tuning 

neural	 nets,	 e.g.,	 “hyper	 parameter	 optimization”	 for	 昀椀nding	 the	 most	 promising	 ar-

rangement	of	networks,	currently,	each	problem	is	still	its	own	story.	

The black-box characteristic is problematic for a more general approach to in-

telligence	 in	 AI,	 but	 also	 poses	 problems	 for	 human-AI	 interaction.	 In	 situations	 in	

which	 providing	 reliable	 reasoning	 is	 essential,	 e.g.,	 medical	 applications,	 the	 lack	

of	evidence	provided	by	machine	learning	results	causes	doctors	to	distrust	the	AI’s	

recommendation.	Nevertheless,	a	few	weeks	after	this	workshop	was	held,	a	confer-

ence	paper	presented	“a	new	way	to	train	neural	networks	so	that	they	provide	not	

only	 predictions	 and	 classi昀椀cations	 but	 rationales	 for	 their	 decisions.”	 The	 system	

learns	“to	extract	pieces	of	input	text	as	justi昀椀cations	–	rationales	–	that	are	tailored	

to	be	short	and	coherent,	yet	su昀케cient	for	making	the	same	prediction.”	(8).	Whether	

this	post-rationalization	 inhibits	 intelligence	 is	debatable,	 but	 illustrates	a	move	to-

.
  “Major AI effort 
today is deep 
neural nets 
trained on massive 
amounts of 
data labeled by 
humans.”
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ward a more general approach to the problem. 

Another example of a very successful narrow AI program that is limited to the 

area	on	which	it	is	trained	is	Google’s	AlphaGo.	It	may	exceed	a	human’s	expertise	in	

the	domain	of	AlphaGo	games,	but	cannot	easily	transfer	this	knowledge	if	the	rules	

of	the	game	are	changed	or	if	it	was	to	play	a	di昀昀erent	game	altogether.	Interesting	

work toward a more general approach to AI was recently published by researchers 

at	OpenAI.	Their	software	platform,	Universe,	was	created	to	test	di昀昀erent	AI-frame-

works on a diverse set of games and website. The goal is to measure how generaliz-

able	the	framework’s	intelligence	already	is,	but	also	to	train	the	framework	to	allow	

knowledge	transfer	between	di昀昀erent	games	and	websites.	The	ultimate	goal	of	AGI	

is	an	agent	that	understands	the	general	context	of	any	situation,	not	only	of	games	

and	websites,	and	adapts	to	them	as	needed,	as	would	a	human.

Paths to AGI

AGI	was	not	considered	extensively	at	this	workshop,	since	its	successful	devel-

opment would likely revolutionize every area of human endeavour in ways that deys 

current	 predictions.	 Discussion	 indicated,	 however,	 that	 most	 advances	 in	 the	 re-

search	昀椀eld	of	AGI	would	highly	speed	up	progress	in	important	areas	of	science	and	

technology,	e.g.,	 increasing	generality	 in	 intelligence	might	allow	an	agent	to	read	

and	understand	very	technical	scienti昀椀c	literature	via	Natural	Language	Processing	

and	 draw	 inferences	 between	 di昀昀erent	 research	 areas.	 This	 capability	 could	 allow	

automated	generation	of	non-trivial	scienti昀椀c	hypotheses.	

A diversity of paths to AGI are currently being explored. Some approaches want to 

build	up	deep	neural	nets	to	become	general,	some	are	purely	symbolic,	and	some	

endeavor to put symbolic approaches and sub-symbolic nets together.

A good overview of the current state of AGI research and the potential prospects 

and challenges arising from AGI can be gleaned from the following publications: 

“Mapping	 the	 Landscape	 of	 Human-Level	 Arti昀椀cial	 General	 Intelligence”	
Sam	S.	Adams,	Itamar	Arel,	Joscha	Bach,	Robert	Coop,	et	al.	AI	MAGAZINE,	
2012. 

http://www.aaai.org/ojs/index.php/aimagazine/article/view/2322/2269

“Arti昀椀cial	 General	 Intelligence”	 Ben	 Goertzel,	 Cassio	 Pennachin.	 Springer,	
2007. PDF: 

http://sanghv.com/download/soft/machine%20learning,%20arti昀椀cial%20
intelligence,%20mathematics%20ebooks/AI/arti昀椀cial%20general%20intel-
ligence%20(2007).pdf
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systems equals 
or exceeds 
general human 
intelligence while 
narrow AI systems 
perform well on a 
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“Arti昀椀cial	 General	 Intelligence:	 Concept,	 State	 of	 the	 Art,	 and	 Future	 Pros-

pects”	 Ben	 Goertzel.	 Journal	 of	 Arti昀椀cial	 General	 Intelligence,	 2014.	 PDF:	
https://www.degruyter.com/downloadpdf/j/jagi.2014.5.issue-1/jagi-
2014-0001/jagi-2014-0001.xml

“Autonomous	 Technology	 and	 the	 Greater	 Human	 Good”	 Steve	 Omohun-

dro.	Taylor	and	Francis,	2014.	PDF:	
http://www.tandfonline.com/doi/full/10.1080/0952813X.2014.895111%20

“Deep-Learning	Reading	Papers	Roadmap”	GitHub:	
https://github.com/songrotek/Deep-Learning-Papers-Reading-Road-

map

“Intelligence	Explosion”	Luke	Muehlhauser.	
http://intelligenceexplosion.com/

“Machine	 Ethics”	 Michael	 Anderson,	 Susann	 Leigh	 Anderson.	 Cambridge,	
2007.

“Research	Priorities	For	Bene昀椀cial	AI”	Future	of	Life	Institute.	PDF
https://futureo昀氀ife.org/data/documents/research_priorities.pdf

“Smarter	Than	Us”	Stuart	Armstrong.	MIRI:	
https://intelligence.org/smarter-than-us/

“Superintelligence:	 Paths,	 Dangers,	 Strategies.”	 Nick	 Bostrom.	 Oxford	 Uni-
versity	 Press,	 2014.	 Purchase	 at:	 https://www.amazon.com/Superintelli-
gence-Dangers-Strategies-Nick-Bostrom/dp/0198739834

“	The	AI	Revolution:	The	Road	to	Superintelligence”	Tim	Urban.	waitbutwhy,	
2015 : 

http://waitbutwhy.com/2015/01/arti昀椀cial-intelligence-revolution-1.html

“The	Value	Learning	Problem”	Nate	Soares,	MIRI	2016.	
https://intelligence.org/昀椀les/ValueLearningProblem.pdf
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The Atomic Precision Landscape

One example of why atomically precise manufacturing is such an attractive pro-

posal	is	illustrated	by	a	recent	theoretical	study,	which	presents	a	new	design	para-

digm	that	both	vastly	simpli昀椀es	the	design	of	mechanical	nanocomputers,	and	relies	

solely	on	mechanisms	with	very	low	friction	(9).	Because	only	rotary	joints	are	used	

for	movement,	a	mechanical	computer	based	on	this	design	is	estimated	to	provide	

1012	 giga	 昀氀oating	 point	 operations	 per	 second	 (GFLOPS)	 per	 watt.	 The	 increase	 in	

energy	e昀케ciency	compared	to	conventional	computers	would	be	a	factor	of	millions,	

or	even	billions.	This	would	not	only	decrease	energy	use	for	computation,	but	would	

greatly	 decrease	 heat	 from	 energy	 dissipation	 in	 applications	 requiring	 extensive	

real	time	computation.	For	example,	extensive	application	of	swarms	of	medical	na-

norobots might otherwise be limited by the heat produced by onboard computation. 

Fig. 4 provides a model of a component of such a mechanical molecular computer.
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Figure 4 

A	molecular	model	of	a	diamond-based	lock,	as	proposed	by	
Merkle	et	al.	(9).	Carbon	atoms	are	green;	hydrogen	atoms	are	gray.		
Copyright	2016,	Institute	for	Molecular	Manufacturing.	

[Permission	to	use	granted	by	Ralph	Merkle,	20161117]
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How could complex parts like the lock illustrated above be manufactured to 

atomic	 precision?	 When	 Richard	 Feynman	 in	 1959	 昀椀rst	 proposed	 “maneuvering	

things	atom	by	atom”	to	manufacture	with	atomic	precision,	he	proposed	no	details	

for	the	systems	of	molecular	machines	that	would	do	the	manufacturing	(10).	In	1981,	

K.	 Eric	 Drexler,	 inspired	 by	 biological	 molecular	 machinery,	 proposed	 a	 molecular	

engineering	path	toward	atomically	precise	manufacturing,	beginning	with	design-

ing proteins to fold in a predetermined way so that a linear polymer folds under the 

in昀氀uence	of	a	constellation	of	weak	(non-covalent)	chemical	bonds	to	give	a	speci昀椀c	

geometry	of	atoms	in	3-dimensional	space.	Within	seven	years	of	Drexler’s	proposal,	

reports appeared in the literature of proteins designed de novo that were substan-

tially more stable than comparable natural proteins of similar sizes (11).

By		2003,	a	novel	protein	fold	had	been	designed	with	atomic	level	accuracy,	that	

is,	 it	 was	 found	 experimentally	 to	 be	 extremely	 stable	 and	 to	 have	 the	 designed	

structure (12). Progress in protein design has accelerated substantially over the past 

few	years;	now,	folds	and	functions	can	be	produced	beyond	those	used	by	biology	

(13).	For	example,	one	paper	published	at	the	end	of	2015	demonstrated	that	existing	

proteins of a certain structural class (the helix-loop-helix-loop structural motif) oc-

.
  “Design for an 
atomically precise 
nanomechanical 
computer 
manufactured 
from diamond 
could increase 
energy efficiency 
one million-fold.”

.
 “Proteins can be 
designed de novo 
to pre-determined 
atomically precise 
geometries.”

Figure 5

The	design	model	of	the	icosahedral	nanocage	shows	its	large,	empty	volume	(25	nm	
diameter	and	an	interior	volume	of	about	3000	nm3).	“Design	of	a	hyperstable	60-subunit	
protein	icosahedron”	yang	Hsia,	Jacob	B.	Bale,	Shane	Gonen	et	al.	Nature	535,	136–139	(07	
July	2016)	doi:10.1038/nature18010.	[http://www.nature.com/nature/journal/v535/n7610/
full/nature18010.html. 
See	also	“Assembling	a	large,	stable,	icosahedral	protein	molecular	cage”	http://www.
foresight.org/nanodot/?p=7154. Credit: University	of	Washington	Institute	for	Protein	De-

sign	“Self-assembling	protein	icosahedral	shell	designed”	http://hsnewsbeat.uw.edu/
story/%E2%80%8Bself-assembling-protein-icosahedral-shell-designed	
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cupy	only	a	small	fraction	of	the	sequence	and	structure	space	so	that	it	is	possible	

to	design	novel	proteins	(not	found	in	nature)	with	precisely	speci昀椀ed	geometries	(14)

In	 addition,	 proteins	 can	 now	 be	 designed	 to	 make	 large,	 arti昀椀cial	 structures	 

(Fig. 5).

Another approach to using peptide bonds between amino acids to arrange atoms 

and	molecular	functions	in	3D	space,	without	requiring	a	long	polymer	to	fold	in	a	

speci昀椀c	 way,	 was	 developed	 by	 Dr.	 Christian	 Schafmeister,	 now	 at	 Temple	 Univer-

sity. Intermediate size bis-peptides are produced by solid phase peptide synthesis 

joining small molecules by two rather than one peptide bonds to give a shape-pro-

grammable	molecule.	Shape-programmable	molecules	could	provide	3D	sca昀昀olds	

upon which to build rationally designed catalysts that could function to build novel 

molecules	using	reactions	not	found	in	natural	biology	(Fig.	6).	More	recently,	a	con-

formationally	restrained	spirocyclic	sca昀昀old	built	using	bis-peptides	has	been	used	

to	position	two	functional	groups,	a	phenol	alcohol	and	a	carboxylic	acid,	to	enhance	

the rate of the Claisen rearrangement by a factor of 58 over the background reaction 

(15).

.
“Proteins can be 
designed de novo 
with folds not seen 
in nature, and 
with more stable 
folds than natural 
proteins.”
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Figure 6

Bis-amino	acids	are	coupled	through	pairs	of	bonds	to	create	bis-peptides.	The	three	example	
bis-peptides	on	the	right	have	all	been	synthesized.	Fig.	5	of	“A	Path	to	a	Second	Generation	
Nanotechnology”	C.	E.	Schafmeister.	
http://foresight.org/roadmaps/Nanotech_Roadmap_2007_WG_Proc.pdf.	Paper 12. Presented 

at	Productive	Nanosystems:	Launching	the	Technology	Roadmap,	October	9-10,	2007	
http://foresight.org/Conferences/NanosysBrochure-edited.pdf.



.
“Shape-
programmable 
peptides provide 
3D scaffolds 
upon which to 
build rationally 
designed 
catalysts.”

Another	potential	path	to	advanced	nanotechnology	and	arti昀椀cial	molecular	ma-

chines	opened	in	the	late	1980s	when	Prof.	Nadrian	Seeman	of	New	york	University	

introduced DNA nanotechnology by demonstrating that nanostructures of various 

shapes could be built by causing DNA to form branched structures instead of the 

usual	duplex	molecule.	Several	years	later	Seeman’s	work	on	DNA	nanotechnology	

earned	him	the	昀椀rst	Foresight	Institute	Feynman	Prize	to	be	awarded	for	experimen-

tal	 work	 (16).	 Early	 constructs	 exhibited	 topological	 connectivity,	 but	 did	 not	 have	

precisely	de昀椀ned	angles	(Fig.	7).
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Figure 7

“A	DNA	Molecule	with	the	Connectivity	of	a	Cube.	This	representation	of	a	DNA	cube	
shows	that	it	contains	six	di昀昀erent	cyclic	strands.	Each	nucleotide	is	represented	by	a	
single colored dot for the backbone and a single white dot representing the base. Note 

that	the	helix	axes	of	the	molecule	have	the	connectivity	of	a	cube.	However,	the	strands	
are	linked	to	each	other	twice	on	every	edge.	Therefore,	this	molecule	is	a	hexacatenane.	
To	get	a	feeling	for	the	molecule,	follow	the	front	strand	around	its	cycle:	It	is	linked	twice	
to	to	each	of	the	four	strands	that	昀氀ank	it,	and	only	indirectly	to	the	strand	at	the	rear.	Note	
that	each	edge	of	the	cube	is	a	piece	of	double	helical	DNA,	containing	two	turns	of	the	
double	helix.”	
Source: “New	Motifs	In	DNA	Nanotechnology”	Nadrian	C.	Seeman,	Hui	Wang,	Xiaoping	
yang,	Furong	Liu,	Chengde	Mao	et	al.	Fifth	Foresight	Conference	on	Molecular	Nanotech-

nology	(November,	1997)	
http://foresight.org/Conferences/MNT05/Papers/Seeman/index.html. 
Original	report	of	cube:	“The	synthesis	from	DNA	of	a	molecule	with	the	connectivity	of	a	
cube”	J.	Chen	and	N.C.	Seeman.	Nature	350:	631–633,	1991.		

.
 “Branched 
DNA junctions 
make possible 
complex 2D and 
3D structures and 
devices.”
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Since	then,	a	steady	series	of	improvements	in	the	technology,	including	the	in-

vention	of	sca昀昀olded	DNA	origami	in	2006	(17),	have	brought	ever	more	complex	2D	

and	3D	nanostructures	and	devices,	including	molecular	walkers,	breadboards,	and	

dynamic	 molecular	 machines	 (18).	 Two	 recent	 examples,	 both	 from	 the	 laboratory	

of	Hendrik	Dietz,	Technische	Universität	München,	illustrate	progress	toward	atomic	

precision	 and	 dynamic	 molecular	 machines	 based	 on	 sca昀昀olded	 DNA	 origami.•	 A	

manipulator able to position molecules with atomic precision. Despite the fact that 

DNA	double	helical	segments	are	2	nm	in	diameter,	a	hinge	that	is	opened	or	closed	

by adjusting the length of adjuster helices could be adjusted to a precision of about 

40 pm (0.04 nm) (Fig. 8).
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Figure 8

A DNA origami manipulator comprises two double strand DNA segments connected by a short 

single	strand	DNA	hinge.	A	third	double	strand	segment,	the	adjuster	helix,	connects	the	two	
double	helical	segments,	and	is	placed	at	one	of	three	positions	from	the	hinge,	and	can	be	
varied in length. Four such three-helix assemblies can be placed in parallel to form the molec-

ular	manipulator.	Depending	on	the	length	and	position	of	the	adjuster	helices,	the	opening	of	
the	manipulator	can	be	controlled	in	123	discrete	steps,	corresponding	to	a	separation	between	
the manipulated molecules of 1.5 to 9.0 nm.  

“Placing	molecules	with	Bohr	radius	resolution	using	DNA	origami”	Jonas	J.	Funke,	Hendrik	
Dietz. Nature Nanotechnology 11,	47–52	(19	October	2015)	http://www.nature.com/nnano/jour-
nal/v11/n1/full/nnano.2015.240.html.	See	also	“Using	DNA	nanotechnology	to	position	mol-
ecules	with	atomic	precision”	http://www.foresight.org/nanodot/?p=6890 Image source: credit 

Dietz	Lab,	TUM	“Nanoscale	rotor	and	gripper	push	DNA	origami	to	new	limits”	https://www.
tum.de/en/about-tum/news/press-releases/short/article/32983/	[permission	to	use	granted	
by	Prof.	Hendrik	Dietz	<dietz@tum.de>	Technische	Universität	München	by	email	201120.]
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A	 former	 postdoctoral	 fellow	 from	 Dietz’s	 lab,	 Carlos	 Castro,	 now	 at	 Ohio	 State	

University,	 demonstrated	 well-de昀椀ned	 programmed	 motions	 with	 DNA	 nanostruc-

tures,	 thus	 beginning	 to	 fabricate	 parts	 for	 machine	 designs	 based	 upon	 the	 way	

that macroscopic machines work (19). In the most recent demonstration of a dynamic 

molecular	 machine,	 the	 Dietz	 lab	 demonstrated	 a	 DNA	 origami	 rotor	 in	 which	 the	

interlocking	DNA	components	rotate	freely	with	respect	to	one	another,	propelled	

by	Brownian	motion.	Although	this	implementation	does	not	yet	include	a	motor,	it	

demonstrates	the	feasibility	of	such	a	machine,	opening	the	way	for	active	devices	

(Fig. 9).

.
 “A molecular 
manipulator built 
using scaffolded 
DNA origami can 
position molecules 
to atomic 
precision.”

Figure 9

Three multilayer DNA components make up this rotary mechanism. The parts join together 

with	a	tight	昀椀t	and	leave	just	2	nanometers	of	play	around	the	axle,	allowing	the	arm	to	swing	
but	not	wobble.	“Nanoscale	rotary	apparatus	formed	from	tight-昀椀tting	3D	DNA	components”	
Philip	Ketterer,	Elena	M.	Willner,		Hendrik	Dietz.	Science	Advances	2(2)	e1501209	(19	Feb	
2016).	DOI:	10.1126/sciadv.1501209	http://advances.sciencemag.org/content/2/2/e1501209.	
See	also	“Tightly-昀椀tted	DNA	parts	form	dynamic	nanomachine”	http://www.foresight.org/
nanodot/?p=7011.
Image source: credit	Dietz	Lab,	TUM	“Nanoscale	rotor	and	gripper	push	DNA	origami	to	new	
limits”	
https://www.tum.de/en/about-tum/news/press-releases/short/article/32983/	

62 “AI for ScIentIfIc ProgreSS WorkShoP”



.
“Dynamic 
molecular 
machines with 
interlocking DNA 
components can 
be built using 
scaffolded DNA 
origami.”

BackgRound Reading

Nanostructures	can	also	be	built	using	DNA’s	chemical	cousin,	RNA.	RNA	can	as-

sume	a	wider	range	of	complex,	compact	3D	shapes	than	can	DNA,	and	some	RNA	

molecules	can	function	as	catalysts,	as	can	proteins	(20).	Thus,	RNA	nanotechnology	

provides	a	somewhat	di昀昀erent	toolkit	for	constructing	functional,	atomically	precise	

nanostructures than does DNA nanotechnology.

Organic	synthesis,	particularly	the	invention	of	mechanically	interlocked	organic	

molecules,	provides	yet	another	path	to	sophisticated	molecular	machine	systems.	

These	include	the	smallest	molecular	machines	possible,	using	far	fewer	atoms	than	

molecular	 machines	 made	 from	 macromolecules,	 like	 proteins	 and	 nucleic	 acids.	

Recent	 examples	 include	 an	 autonomous	 chemically	 fueled	 molecular	 motor	 (21),	

a	molecular	arm	to	transport	cargo	(Fig.	10),	a	 light-driven	molecular	machine	 (22),	

and	two	molecular	wheels	connected	by	an	axle,	which	rotate	in	opposite	directions,	

just	like	the	wheels	of	a	car	(23).	Making	them	potentially	even	more	useful,	address-

able molecular machines have been arranged in the cavities of a porous crystal (24). 

Other examples include a single molecule pump that concentrates small molecules 

against	a	gradient	(25),	and	several	types	of	nanocars	(26).

Figure 10

Chemical structure of a molecular robotic arm (shown in black) able to reposition a 

molecular cargo (shown in red) in either direction from blue-to-green or green-to-blue 

platform	sites.	“Pick-up,	transport	and	release	of	a	molecular	cargo	using	a	small-molecule	
robotic	arm”	Salma	Kassem,	Alan	T.	L.	Lee,	David	A.	Leigh,	Augustinas	Markevicius,	Jordi	
Solà. Nature Chemistry 8,	138–143	(21	December	2015)	doi:10.1038/nchem.2410. 
http://www.nature.com/nchem/journal/v8/n2/full/nchem.2410.html.	
See	also	“Molecular	arm	grabs,	transports,	releases	molecular	cargo”	 
http://www.foresight.org/nanodot/?p=6937.	Credit: Leigh	Group,	University	of	Manchester	
http://www.catenane.net/pages/2015_molecular_transporter.html.  
[permission	to	use	granted	by	Prof.	David	A	Leigh,	FRS	<david.leigh@manchester.ac.uk>	
The	University	of	Manchester	by	email	20161120.]
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.
“A variety of 
molecular 
machines can 
be built from 
mechanically 
interlocked 
organic 
molecules.”

One of the iconic achievements in the history of 

nanotechnology	occurred	in	1989,	when	a	scanning	

tunneling microscope (STM) tip was used to arrange 

35	xenon	atoms	on	a	nickel	surface	to	form	the	IBM	

corporate logo (27). A number of varieties of scan-

ning probe microscopes proved useful during the 

following decades for atomically precise construc-

tion on surfaces. Non-contact atomic force micros-

copy (NC-AFM) has demonstrated mechanical ma-

nipulation of atoms on semiconductor surfaces (28). 

Lateral force microscopy provided further improve-

ments in resolution and manipulation (29).

.
“Dynamic atomic 
force microscopy 
enables 
deterministic 
manipulation of 
single atoms on 
surfaces.”



65 “AI for ScIentIfIc ProgreSS WorkShoP”

BackgRound Reading

AI for Scienti昀椀c Progress: State of the Art

Over	the	past	decade,	various	昀氀avors	of	arti昀椀cial	intelligence	have	been	applied	

to	 advance	 scienti昀椀c	 understanding	 and	 technology	 development.	 Many	 of	 these	

have	been	in	biology	and	medicine,	but	increasingly,	we	see	application	in	areas	rel-

evant to achieving atomic precision in nanotechnology. It follows a brief description 

of relevant ongoing research projects by workshop participants that were discussed 

at the workshop and that inspired the projects put together by participants during 

the workshop.

AI to plan organic synthesis

One workshop component included the award of the 2016 Feynman Prizes 

in	 Theory,	 Experiment,	 and	 the	 Distinguished	 Student	 Award.	 The	 2016	 Award	 for	

Theory	honored	workshop	participant	Bartosz	A.	Grzybowski	who,	together	with		his	

colleagues,	 developed	 a	 project	 that	 signals	 an	 imminent	 improvement	 in	 the	 no-

toriously	challenging,	long-term	attempt	to	automate	planning	synthetic	routes	for	

organic	chemistry	(30).	In	addition	to	automating	the	search	for	a	synthetic	route,	the	

program	described	can	be	set	to	follow	user-directed	priorities,	such	as	the	shortest	

route,	 the	 routes	 using	 the	 least	 expensive	 reagents,	 the	 best-documented	 reac-

tions,	or	stipulating	that	regulated	reagents	or	particular	solvents,	etc.	be	avoided.	

The paper is acknowledged to have done a promising job converting organic 

chemistry into a computationally tractable form by dealing with problems in terms 

of	networks	and	graph	theory	(31).	 ‘Chematica’	not	only	greatly	simpli昀椀es	cobbling	

a	 synthetic	 route	 together	 from	 reactions	 reported	 in	 the	 literature,	 but	 also	 deals	

with	how	to	synthesize	a	molecule	that	has	never	been	synthesized	before,	in	struc-

tural classes that have not been explored. These are handled by a chemical expert 

system that explicitly embodies a huge number of rules and the various details that 

specify	the	context	in	which	the	reaction	works	or	doesn’t	work.	These	rules	are	then	

used to propose synthesis of new molecules. The various scoring functions that are 

used to evaluate alternatives at each step of the synthesis are also described.

In	 discussing	 the	 project,	 a	 science	 commentator	 imagines,	 “how	 about	 taking	

this new software … and asking it for routes that prioritize the starting MIDA boronates 

and	 couplings	 that	 the	 Burke	 synthesis	 machine	 (31)	 is	 so	 good	 at	 working	 with?”	

[move	ref	to	end	of	quote]

.
“Narrow AI can 
now plan synthetic 
routes for organic 
chemistry, 
including 
molecules 
never before 
synthesized.”
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“Computer-Assisted	 Synthetic	 Planning”	 昀椀rst	 focuses	 on	 the	 applications	 of	 net-

work	algorithms	to	search	the	universe	of	known	reactions,	and	introduces	scoring	

functions	to	evaluate	hundreds	of	millions	of	synthetic	possibilities	per	second,	iden-

tifying	synthetic	routes	optimized	for	various	user-speci昀椀ed	criteria.	Secondly,	to	deal	

with	 completely	 de	 novo	 synthetic	 planning,	 the	 review	 considers	 the	 intellectual	

connections	of	synthetic	planning	with	other	昀椀elds,	 like	chess,	and	identi昀椀es	three	

key	 di昀昀erences:	 (1)	 the	 number	 of	 rules	 is	 much	 larger	 (tens	 of	 thousands	 versus	

order-of-ten	for	chess),	(2)	the	applicability	of	any	given	rule	depends	on	the	context,	

that	is,	the	presence	of	other	chemical	groups	in	the	same	molecule,	and	(3)	in	con-

trast	to	chess,	there	is	no	well-de昀椀ned	criterion	to	evaluate	“synthetic	position”	and	

plan future moves. The third section considers remaining challenges and opportuni-

ties for further research. 

A set of benchmark problems in planning organic synthesis can be formulated as 

a	planning	problem	in	the	Planning	Domain	De昀椀nition	Language	(PDDL),	developed	

in an attempt to stande AI planning languages. It is demonstrated that only a fraction 

of the benchmark problems can be encoded using known methods. Organic synthe-

sis is thus proposed as a new challenge for AI planning (32). 

Machine Learning for quantum chemistry

the task of explicitly solving the Schrödinger equation is circumvented for a di-

verse class of small organic molecules by developing a non-linear regression ma-

chine learning model for computing molecular atomization energies in chemical com-

pound space. the model is based on a measure of distance in compound space that 

accounts for stoichiometry and con昀椀guration. The results of test calculations show 

the method to be an order of magnitude more accurate than counting bonds or semi-

empirical quantum chemistry (33). the senior author of this paper was a workshop 

participant.

Predicting new crystal structures in materials research using empirical rules ob-

tained by data mining large amounts of experimental data has not been very e昀昀ective. 

however, transferring the concept of heuristic rule extraction to a large library of ab 

initio calculated results has been demonstrated to be an e昀昀ective tool for predicting 

new crystal structures (34). By data-mining density functional quantum mechanical 

calculations, correlations were found among ab initio calculated energies for 114 dif-

ferent crystal structures in each of 55 binary metal alloys. these correlations were ex-

.
“Machine learning 
provides an 
alternative to 
explicitly solving 
the Schrödinger 
equation for a 
diverse class of 
small organic 
molecules.”
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tensions of heuristics previously established on the basis of large amounts of experi-

mental structure information. the number of calculations required to obtain a given 

level of accuracy of crystal structure prediction increased less than linearly with the 

increase of structures in the library, indicating that data mining of ab initio calculations 

has promise for practical prediction of crystal structure.

the continued advancement of computational materials science to accurately 

evaluate electronic and thermodynamic properties of a wide-range of materials re-

quires large open databases. the usefulness of such databases depends upon exact 

speci昀椀cation of complex quantum mechanical codes, including many details that are 

seldom reported in publications. the Automatic-flow (AfLoW) standard for the high-

throughput construction of materials science electronic structure databases has been 

developed to provide standard parameter values for high-throughput computational 

materials discovery. Parameters include k-point grid density, basis set plane wave ki-

netic energy cut-o昀昀, exchange–correlation functionals, pseudopotentials, DFT+U pa-

rameters, and convergence criteria (35).

Machine learning has also been used to facilitate the search for novel thermo-

electric materials by bridging the gap between experimental investigations and 昀椀rst 

principles DFT calculations. Experimental searches have largely been con昀椀ned to a 

small set of chemical and structural families. Predicting properties from 昀椀rst principles 

for a wide range of structures is feasible but very challenging, and has not been used 

to guide synthesis. An open machine learning recommendations engine based on 

screening 25,000 known materials was developed and made available on the web. 

the training set was obtained from a large experimental materials database plus elec-

tronic structure data derived from 昀椀rst principles. One limitation is that the volume of 

high quality training datasets in materials research is much smaller than in the biologi-

cal sciences, where bioinformatics has been extensively developed. the choice of the 

descriptor set (low level materials characteristics like crystal structure and chemical 

composition) for this work proved important. finally, the recommendation engine was 

built using the “random forest” algorithm, which uses a collection of weak learners to 

collectively model complex nonlinear behavior. A material that the recommendation 

engine scored highly, that was chemically very di昀昀erent from known thermoelectrics, 

and that was easy to synthesize, was tested and found to exemplify the discovery of a 

new thermoelectric class deserving of further optimization and further study (36). the 

authors suggest that this “paradigm could eventually replace trial-and-error and fortu-

ity in the search for new materials across a wide variety of application areas.”
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Metal-organic frameworks (Mofs) are nanoporous, crystalline materials compris-

ing metal or metal-oxide nodes connected by variously functionalized organic linkers. 

reticular chemistry, the rational design of Mofs from molecular building blocks of 

various di昀昀erent topologies, has been used to design vastly diverse structures, with 

chemical and geometrical properties optimized for diverse applications. Despite 

these successes, a noticeable limitation was the lack of a speci昀椀c topology called 

1-D rod topology, in which the metal-oxide secondary building units extend as a rod. 

Mofs with this topological feature had extremely interesting properties, “including 

remarkable co2 capture in Mof-74”, but reticular chemistry studies on 1-D rod Mof’s 

had been largely limited to experimental studies focusing on analogs of Mof-74. the 

reticular chemistry study reported in (37) combines the creation of Mof-74 analogs, 

which previously had only been studied experimentally, with a computational method 

to automate generation of hypothetical analogs of Mofs exhibiting a 1-D rod topology. 

the approach taken was to vary the chemical composition of the Mof-74 ligand to 

alter its geometric and chemical properties. Mof-74 requires a novel building algo-

rithm since it has complex connectivity between linkers and 1-D secondary building 

unit rods. only 61 of the 60,000,000 chemical species in the database used were 

identi昀椀ed as feasible substitutes for the MOF-74 linker. One in the set [olsalazine, or 

3,3’-azo-bis(6-hydroxybenzoate) salicylic acid] was commercially available and was 

used to synthesize a Mof-74 analog. this olsalazine analog of Mof-74 was prepared 

and found to have the predicted crystal structure and co2 adsorption behavior, thus 

validating the new, systematic method for identifying Mofs exhibiting a 1D rod topol-

ogy. The other 60 analogs identi昀椀ed that could be synthesized exhibit a wide range of 

surface areas with varied roughness and functionality that could be suited for other 

separations involving molecules larger than co2.

Information acquisition from dynamic force spectroscopy

Most of the tip-sample interactions in scanning probe microscopy are di昀케cult to 

understand and depend on many parameters. further, the use of multimodal SPM 

imaging in recent years, providing multiple channels of information simultaneously, 

results in huge increases in the amount of information requiring analysis. While the 

last three decades have seen substantial advances in low noise microscope platforms 

and improved probes, little attention has been given to the data acquisition process.

one of the most useful modes of SPM for mechanical manipulation of atoms on 

a surface has turned out to be non-contact atomic force microscopy (nc-AfM), also 

known as dynamic force microscopy. A speci昀椀c challenge for information processing 
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in the case of nc-AfM is the mismatch between pixel acquisition at millisecond time 

scales and the sub-microsecond time scale of cantilever oscillations, resulting in se-

vere compression of multidimensional dynamic information of a vibrating cantilever 

to only a few measured parameters. Various non-linearities in the vibrations contain 

detailed information about sample properties that cannot be ignored or compressed. 

Multivariate statistical methods based on information theory have been used to ac-

quire and analyze the entire response of the cantilever (38). only statistically relevant 

components of the cantilever trajectory, and hence materials functionality, are stored. 

Principal component analysis establishes dominant behavior types so that correlation 

functions can identify underlying sources of observed behaviors. this strategy pro-

vides information on how the data is structured in space, frequency, and information 

domains. thus, data can be explored without information loss or imposed bias. 

Progress in dynamic and functional imaging leads to multidimensional data sets 

containing information on physical and chemical functions along the probe trajectory. 

the infrastructure for analyzing such data has been developed in the context of  medi-

cal and satellite imaging. clustering, unsupervised learning techniques, supervised 

neural network-based classi昀椀cation, and deep data analysis of physically relevant 

multivariate statistics data can be used to establish statistically signi昀椀cant correlations 

in such data sets (39). 
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Appendix to 
Project 1   09.

A hypothetical AI-backed CAD for

 nanotechnology 

Volunteer	contribution	to	project	1	by	Jazear	Brooks

Summary

In	 an	 e昀昀ort	 to	 create	 an	 AI-backed	 computer-aided	 design	 (CAD)	 for	 nanotech-

nology,	researchers	can	use	either	MDT	or	CaDNAno	as	the	basis	for	the	program	

---	both	are	free	and	open	source.		MDT	has	built-in	analytical	tools,	while	CaDNAno	

uses	 CanDo’s	 昀椀nite	 element	 analysis.	 Given	 that	 genetic	 algorithms	 are	 limited	 in	

their	 abilities	 to	 produce	 optimal	 solutions,	 researchers	 will	 likely	 choose	 to	 use	 a	

customized,	blended	AI	algorithm.	The	PDB	昀椀le	format	can	be	used	as	the	basis	for	

generating	shareable	昀椀les	containing	the	following	information	for	each	atom:	serial	

number,	name,	residue	sequence	number,	residue	name,	chain	identi昀椀er,	and	Carte-

sian coordinates.  



CAD Software for Nanotechnology

Much	 of	 my	 research	 into	 CAD	 programs	 for	 nanotech	 designs	 revealed	 quite	

dated software that is no longer generating active participation or recent updates.  

Perhaps	 unsurprisingly,	 Autodesk,	 makers	 of	 AutoCAD,	 proved	 to	 have	 the	 strong-

est	o昀昀erings.		Relevant	Autodesk	products	include	the	company’s	Molecular Design 

Toolkit (MDT),	which	“enables	design	at	the	atomic	level	with	a	suite	of	open	source	

molecular	modeling	tools	and	seamless	access	to	cloud	computing”.		As	a	free	and	

open-source	package	that	includes	integrations	of	other	open-source	software,	MDT	

o昀昀ers	a	mature	and	well-supported	basis	for	this	application.	

MDT’s	analytic	functions	 include	both	structural	and	calculation	data	for	atoms,	

bond	topology,	primary	structures,	position,	momenta,	calculated	properties	such	as	

potential	energy	or	dipole	moments,	molecular	orbitals,	and	even	geometric	analy-

sis methods for analyzing time evolution of angles.  While there is extensive docu-

mentation	on	MDT	and	its	various	APIs,	I	was	unable	to	昀椀nd	any	granular	information	

on just how the software performs its analyses of macro properties. 

For	 designing	 three-dimensional	 nanostructures	 via	 DNA	 origami,	 CaDNAno is 

another free and open-source option with integrated analysis functions provided by 

CanDo	and	3D	interface	functions	using	Autodesk’s	Maya	software,	via	the	Molecular 

Maya Toolkit (mMaya).  

CaDNAno’s	integration	with	CanDo	allows	the	software	to	perform	昀椀nite	element	

analysis	 to	 provide	 relative	 certainty	 of	 structures’	 stability.	 This	 analysis	 o昀昀ers	 de-

signers’	 computational	 predictions	 of	 both	 3D	 shapes	 and	 the	 昀氀exibility	 of	 single-	

and multi-layer structures.   According to CanDo,	“The	thermally	induced	昀氀uctuations	

of	DNA	nanostructures	are	computed	using	the	equipartition	theorem	of	statistical	

mechanics and normal mode analysis … Atomic models of DNA nanostructures are 

generated	from	3D	solution	shapes	and	thermal	昀氀uctuations.”		If	someone	would	like	

to	view	the	source	code	for	generating	the	昀椀nite	element	models,	it	is	available	upon	

request	by	emailing	Danial	Dardani	at	ddardani@mit.edu.	

CanDo	is	a	free	resource	developed	by	MIT’s	Laboratory	for	Computational	Biolo-

gy	and	Biophysics,	and	can	be	used	separately	from	CaDNAa,no	if	preferred.		Cando	

accepts	input	from	CaDNAdo	or	Tiamat	昀椀les.			

The	speci昀椀c	types	of	macro	analysis	that	will	be	most	useful	to	a	researcher	will,	

of	course,	depend	on	the	speci昀椀c	applications	of	their	designs.
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AI Algorithms

I reviewed various types of AI algorithms in accordance with the criteria that the 

algorithm	be	able	to	take	into	account	nanosystem	requirements	and	materials	and	

then	 昀椀nd	 the	 optimal	 set	 of	 actions	 to	 take	 to	 generate	 a	 system.	 	 Since	 we	 men-

tioned	genetic	algorithms	speci昀椀cally	at	the	conference,	I	researched	on	their	merits	

and disadvantages in comparison to other types of algorithms. My research revealed 

that the weaknesses of	 genetic	 algorithms	 are	 that	 (1)	 they	 won’t	 necessarily	 昀椀nd	

optimal	solutions,	though	they	are	very	good	at	昀椀nding	good	solutions,	and	(2)	the	

solutions they provide may vary each time a researcher runs them. 

 

While there are many cheat sheets available to help a researcher choose which 

algorithm	to	use,	the	ultimate	answer,	as Microsoft says,	 is	“it	depends”,	and	“even	

the	 most	 experienced	 data	 scientists	 can’t	 tell	 which	 algorithm	 will	 perform	 best	

before	trying	them”.		All	of	these	factors	go	into	the	decision-making	process:	size	of	

the	data,	quality	of	the	data,	nature	of	the	data,	what	the	researcher	wants	to	do	with	

the	answer,	how	the	math	of	the	algorithm	was	translated,	and	how	much	time	the	

researcher	has.		 In	practice,	scientists	would	need	to	blend	di昀昀erent	types	of	algo-

rithms	together	in	order	to	achieve	a	better	success	rate	when	昀椀nding	optimal	solu-

tions,	such	as this example of blending self-organization with a genetic algorithm in 

order to optimize protein structure predictions. 

Assuming	that	a	researcher	intends	to	use	genetic	algorithms,	at	least	in	part,	for	

their	project,	we	can	assume	that	the	AI	will	make	errors	in	which	it	昀椀nds	sub-optimal	

solutions.		For	the	best	results,	humans	will	need	to	customize	both	the	algorithm	it-

self,	and	provide	customized	analysis	of	the	algorithm’s	outputs	in	order	to	generate	

better	inputs	in	an	e昀昀ort	to	increase	the	likelihood	of	the	AI	昀椀nding	optimal	solutions.

Shareable Data Formats

Practitioners	 will	 likely	 need	 to	 use	 many	 data	 formats	 across	 the	 di昀昀erent	 as-

pects	 of	 the	 project.	 	 For	 instance,	 they	 will	 likely	 need	 to	 store components and 

parts	in	a	database	format	of	their	choice.			If	they	decide	to	use	CaDNAno,	they	will	

manage	both	.json	(design	昀椀le	format)	.csv	(sequence	昀椀le	format)	昀椀les,	or	use	a	tool to 

convert these	昀椀les	into	the	.pdb	format.		PDB	can	store	the	following	for	each	atom:	

serial	number,	name,	residue	sequence	number,	residue	name,	chain	identi昀椀er,	and	

Cartesian coordinates. 

appendix



Autodesk’s	Molecular	Design	Toolkit	is	a	Python	library, and many of its functions 

require	a	Docker server to run.		you	can	use	program	database	[or	is	it	protein	data-

bank?](.pdb) assemblies and DNA	sequences	in	Microsoft	Deployment	Tookit	(MDT),	

as	well	and	read	and	write	structured	data	昀椀le	format	(.sdf),	chemical	昀椀le	format	(.xyz) 

,	and	crystallographic	information	昀椀le	formation	(.mcif)昀椀les.PDB	will	likely	be	a	good	

basis	for	deriving	a	researcher’s	speci昀椀c	format	needs.		Full	documentation on this 

format is freely available.
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