by Tom McKendree
Earlier this year I spent two months with the National Science Foundation’s Summer Institute in Japan. I found that while Japan has a long term focus on developing micro- and nanoscale technology, they do not yet have a commitment to developing molecular manufacturing per se.
The Japanese research community is composed of many disparate parts, and Japanese research in molecular nanotechnology reflects this. The Ministry of International Trade and Industry (MITI) has a research arm, the Agency of Industrial Science and Technology (AIST). AIST was reorganized last year. Much of the reorganization was a merger of similar research institutes, but the reorganization also included the formation of a new institute, the National Institute for Advanced Interdisciplinary Research (NAIR).
NAIR currently has three efforts started. The first is “Atom Technology,” which aims at developing technologies for manipulating individual atoms and molecules. While in Japan I met with Dr. Hiroshi Tokumoto, a senior researcher on this project.
The second NAIR project is on “Cluster Science,” which is focused on experimentally learning the properties of lumps of less than 1000 atoms or molecules.
The third group is looking at “Bionic Design,” which, based on analogy with how living bodies operate, hopes “to establish principles for design and production of molecular machine systems which have the…abilities of self-assembly, self-repair and functional adaptation to the environment.” NAIR may be the perfect organizational venue within Japan to eventually develop molecular nanotechnology.
The Science and Technology Agency of Japan (STA) is a ministry-level organization reporting directly to the Prime Minister. It is much smaller than AIST, but closer to the political center. STA has five direct research institutes and seven “Public Corporations” under it. One of these corporations is the Research Development Corporation of Japan (JRDC).
JRDC runs several Exploratory Research for Advanced Technology (ERATO) projects. These are meant to be very “un-Japanese” in their design, to promote creativity, and to produce faster results closer to the leading edges of technology. ERATO projects last for five years, independent of their results. They are (1) led by and named for researchers who showed excellence when young; (2) staffed by young researchers on loan; and (3) generally follow novel research paths.
I worked at an ERATO project, the Nagayama Protein Array. Other ERATO projects which appear to be at least somewhat relevant to molecular nanotechnology are Kawachi Millibioflight, Itaya Electrochemiscopy, Yabagida Biomotron, Yoshimura Pi-Electron Materials, Noyori Molecular Catalysis, Kimura Metamelt, Shinkai Chemirecognition, and Aono Atomcraft.
I visited Dr. Aono at the Institute of Physical and Chemical Research (RIKEN). RIKEN is an extremely prestigious research organization in Japan, and a public corporation under the STA. Researchers there have a great deal of money and freedom. RIKEN has chemistry and biotechnology researchers with the skill necessary to make significant progress in molecular nanotechnology.
Much research at RIKEN could bear on molecular nanotechnology, especially their Frontier Research Program, but none is yet focused on that precise goal. While there, I was able to meet Dr. Masahiko Hara, a leading researcher in the Frontier Research Program.
Dr. Seishi Kudo worked on the now-completed Hotani Molecular Dynamics Assembly ERATO project, which investigated flagellar rotary motors. It was quite exciting watching bacteria actually swim around under flagellar power, and actually being able to see flagella operating.
Research in Japan includes work at various universities. The universities of Kyoto and Tokyo are well regarded. Since the universities are under the Ministry of Education, there is not as much cooperation between the universities and AIST or STA. I did manage, however, to visit Prof. Masayuki Nakao and Dr. Larry Nagahara at Tokyo University.
I was invited along to a tour of the Hitachi Mechanical Engineering Research Laboratory. After asking about work related to molecular nanotechnology, I was able to arrange a visit to the Hitachi Advanced Research Laboratory. There I was hosted by Dr. Tsuyoshi Uda, and met Dr. Yasuo Wada, who had just published a paper on the theoretical operation of single-atom wires, and who suggested using these wires in “atomic wire electromechanical relays,” where a single atom is the switching element. His next major research goal is to build single atom wires, using scanning probe devices, and to test their electrical properties. He hopes to eventually build logic circuits out of single-atom wide wires.
One comment I kept hearing in Japan was that molecular nanotechnology will be taken seriously once someone succeeds in actually building one of the components that Drexler and other have modeled. The analogy used was that researchers began taking micromachinery seriously after the first micromotor was demonstrated.
This is understandable, but unwise. It is understandable, because many new technical ideas run into real world implementation difficulties. Thus, a physical demonstration is a good indicator that applicable results are approaching, and thus is a plausible milestone at which to increase one’s commitment to a new idea. As a practical matter, I suspect that many researchers will hold back until there is a physical demonstration of a molecular mechanical component, and then they will jump in.
This is an unwise strategy, however, in part because molecular nanotechnology has both extreme importance, and difficult timing issues. Events may prove that the time from the demonstration of the first “Drexler-style” molecular component and large scale applicability will be too short for research organizations to adequately respond to. It may be crucial to begin work before the first demonstration if a scenario of massive design-ahead combined with an assembler breakthrough occurs.
The strategy of waiting for first demonstration to begin research is also unwise because it seems so widespread. Anyone who works on molecular nanotechnology early will gain a tremendous lead, due to the lack of competition. Once the “bandwagon” starts, even a small amount of prior work will carry large relative weight. Thus, a small early research project is a low cost bet with a very high potential payoff.
Another implication of this mindset is that if today’s theoreticians were to design a component of some arguable relationship to molecular nanotechnology, specifically so that it could easily be demonstrated, then that demonstration could have a substantial impact well in excess of its technical merit.
Finally, the NSF Summer Institute in Japan is an excellent program. Any US resident who is a Ph.D. student should consider applying. To do so, send a message to [email protected], and request an application.
Tom McKendree is a Ph.D. candidate at USC in the Industrial and Systems Engineering Department. He is also president of the Molecular Manufacturing Shortcut Group, a special interest chapter of the National Space Society.