The media drumbeat touting molecular electronics as the first likely wide-scale applications of nanotechnology is getting louder:
- An article in EE Times ("Researchers close to delivering molecular circuits", by Chappell Brown, 15 February 2002) says "Although it's a little like watching a chess match in slow motion, molecular electronics researchers are converging on viable circuit-fabrication methods. Several approaches to building circuits with molecules reached the stage of at least rudimentary logic or simple devices, such as inverters or AND gates, last year."
- The looming advent of nanoelectronics was also highlighted at this yearís annual meeting of the American Association for the Advancement of Science (AAAS) in Boston, 14-19 February 2002. A press release from the AAAS (14 February 2002) says "A landslide of discoveries brought the promise of powerful electronic and computing devices, built at the molecular scale, to the forefront of scientific research in 2001. In particular, several research teams hooked up tiny devices such as transistors, wires, and switches to form working circuits for the first time", and describes the many advances by researchers in the field in the past year. "We may be five to six years ahead of schedule in nanoelectronics, and some of today's research is nearing the stage where it could be turned over to industrial production . . . It's been a momentous period for nanoelectronics, with more in store for the future," said James Ellenbogen of the Mitre Corporation. In December 2001, the editors of the journal Science, which is published by the AAAS, highlighted the field of molecular electronics as this yearís "Breakthrough of the Year" in a special issue of the journal (20 December 2001).
- More coverage of the molectronics buzz at the AAAS meeting was provided by an article from the Atlanta Constitution ("Science gathering predicts a big future for small tech", by Mike Toner, 15 February 2002) that appeared on the Small Times website. Recent advances in molectronics, Toner writes, are "the harbingers of a new epoch" that "might make it possible to develop a generation of nanorobots that could fight disease on a molecular level, biochemical sensors that could detect a single anthrax cell and computer storage devices that could pack the contents of the Library of Congress in the space of a sugar cube. . . . One by one, researchers are marshalling the building blocks of a market the National Science Foundation estimated could grow to $1 trillion and employ 2 million people over the next 10 to 15 years." The article also quotes nanotech researcher Charles Lieber, a Harvard chemistry professor and winner of the 2001 Foresight Feynman Prize for Experimental work: "A year ago, I wasn't sure that the achievement of a complex integrated nanosystem was possible. Now I think it is a distinct possibility in the near future."