A round-up of commentary about the state of nanotech research, given the 50th anniversary of Feynman’s talk:

Adam Keiper in the WSJ

If this dispute over nano-nomenclature only involved some sniping scientists and a few historians watching over a tiny corner of Feynman’s legacy, it would be of little consequence. But hundreds of companies and universities are teeming with nanotech researchers, and the U.S. government has been pouring billions of dollars into its multiagency National Nanotechnology Initiative.
So far, none of that federal R&D funding has gone toward the kind of nanotechnology that Drexler proposed, not even toward the basic exploratory experiments that the National Research Council called for in 2006. If Drexler’s revolutionary vision of nanotechnology is feasible, we should pursue it for its potential for good, while mindful of the dangers it may pose to human nature and society. And if Drexler’s ideas are fundamentally flawed, we should find out—and establish just how much room there is at the bottom after all.

Eric Drexler on Keiper and on the NRC report

The evaluation of the feasibility of molecular manufacturing and recommendations for research form the concluding section of the body of the NRC’s Triennial Review of the National Nanotechnology Initiative. In the three years since the publication of the NRC report, I have seen no document from a Federal-level source that acknowledges these conclusions, and, of course, none that offers a substantive response.
This is of concern, because the NRC report calls for a sharp break with past thinking. To put it bluntly, much of the opinion in general circulation about molecular manufacturing (both pro and con) is rubbish because it is based on mythology, and not on the scientific literature. The NRC report can be criticized on several points, but it isn’t rubbish.

Dexter Johnson on Keiper and Drexler

I am nonplussed. Are we to believe that Prof. Moriarty is one of only a handful of scientists capable of securing funding for his experiments into molecular nanotechnology?

Richard Jones on the same

Of the ideas dealt with in “Plenty of Room”, some have already come to pass and have indeed proved economically and societally transformative. These include the idea of writing on very small scales, which underlies modern IT, and the idea of making layered materials with precisely controlled layer thicknesses on the atomic scale, which was realised in techniques like molecular beam epitaxy and CVD, whose results you see every time you use a white light emitting diode or a solid state laser of the kind your DVD contains. I think there were two ideas in the lecture that did contribute to the vision popularized by Drexler – the idea of “a billion tiny factories, models of each other, which are manufacturing simultaneously, drilling holes, stamping parts, and so on”, and, linked to this, the idea of doing chemical synthesis by physical processes.

Jones ends with a observation about the course of nanotech development:

Perhaps for the first time in recent years a major new technology is largely being developed outside the USA, in Europe to some extent, but with an unprecedented leading role being taken in places like China, Korea and Japan. In these places the “nanotech schism” that seems so important in the USA simply isn’t relevant; people are just pressing on to where the technology leads them.

This is a key observation.  Jones slants it as if to say that therefore, the “schism” wasn’t really important after all.  But to come away with that impression would be to miss a very important point:  The USA is blowing its opportunity to be a leader in one of the most important technologies of the 21st century because of the political shenanigans.