Self Computing Growing DNA crystals developed

Emeka Okafor writes "PhysOrg comments on a breakthrough in the path towards DNA computing, with implications in the field of molecular construction methods: "…Caltech assistant professor Erik Winfree and his colleagues show that DNA "tiles" can be programmed to assemble themselves into a crystal bearing a pattern of progressively smaller "triangles within triangles," known as a Sierpinski triangle. This fractal pattern is more complex than patterns found in natural crystals because it never repeats…" More… A key feature of the Caltech team's approach is that the DNA tiles assemble into a crystal spontaneously. Comprising a knot of four DNA strands, each DNA tile has four loose ends known as "sticky ends." These sticky ends are what binds one DNA tile to another. A sticky end with a particular DNA sequence can be thought of as a special type of glue, one that only binds to a sticky end with a complementary DNA sequence, a special "anti-glue''…In fact the work is the first experimental demonstration of a theoretical concept that Winfree has been developing since 1995–his proposal that any algorithm can be embedded in the growth of a crystal. This concept, according to Winfree's coauthor and Caltech research fellow Paul W. K. Rothemund, has inspired an entirely new research field, "algorithmic self-assembly," in which scientists study the implications of embedding computation into crystal growth…"

Leave a comment

0
    0
    Your Cart
    Your cart is emptyReturn to Shop