A variant of the Ordinary Expectations scenario has played out for a number of years now. And after years of continuing turbulence, the net result is this: Japanese economic power has grown, with other East Asian economies beginning to close the gap. Their greater investment in long range civilian R&D, with a focus since the late 1980s on engineering molecular systems, has enabled them to take the lead on the path to nanotechnology.
European economic integration and German unification, combined with the pressure of economic and technological competition from the United States and Japan, have turned Europe inward to some extent. Although cultural ties with the United States keep U.S.-European relations on a basically warm basis, hostility between Europe and Japan—already marked in the 1980s—has grown. Europe had long enjoyed great strength in chemistry and basic science, and in the 1980s had led the United States in organizing efforts on molecular electronics. This has placed them in a strong position with respect to nanotechnology, behind Japan but ahead of the United States.
The United States remains an enormously productive economy, but the cumulative effects of an educational system that neglects learning and corporations that emphasize quarterly results have made themselves felt. After decades of emphasizing the short term, people now find themselves living in the long term they had neglected. The reaction to U.S. relative economic decline has not been investment and renewal, but rhetoric and hostility directed toward “foreigners,” particularly the Japanese.
It is thus an isolated and somewhat defensive Japan that builds the first molecular manipulator and recognizes its long-term potential. The technology is developed in a government-funded research laboratory with cooperation from major Japanese corporations. As the result of increasing tensions, foreign researchers—those still welcome in Japan—were not invited to participate in this particular effort.
A series of committee meetings formalizes a tacit decision made earlier in choosing researchers, and the specifics of this new development are treated as proprietary. Impressive results are announced, stirring pride in Japanese research, but the specifics of the methods involved are kept quiet.
This scarcely delays the diffusion of the basic technology. After the first demonstration, even the most myopic funding agencies support projects with the same goal. A European project had already been started in a French laboratory: it soon succeeds in building an assembler based on somewhat different principles. European researchers follow the Japanese precedent by keeping the details of their techniques as a loosely held secret, in the name of European competitiveness. The United States follows suit a year later in an effort funded by the Department of Defense.
Public life goes on much as before, dominated by the antics of entertainers and politicians, and by tales of the fate of the environment or the Social Security system in a fantasy-future of extrapolated twentieth-century technology. But more and more, in policy circles and in the media, there is serious discussion of nanotechnology and molecular manufacturing—what they mean and what to do about them.
In Japan, second-generation assemblers have begun to turn out small quantities of increasingly sophisticated molecular devices. These are prototypes of commercially useful products: sensors, molecular electronic devices, and scientific instruments; some are immediately useful even at a price of a hundred dollars per molecule. There are plans on the drawing boards for molecular assemblers that could make these devices at prices of less than one-trillionth of a dollar. There are long-term plans (viewed with hope and anticipation) for full-fledged molecular manufacturing able to make almost anything at low cost from common materials.
This is exciting. It promises to at last free Japan from its decades-old dependence on foreign trade, foreign food, foreign raw materials, and foreign politics. By making spaceflight inexpensive and routine, it promises to open the universe to a people cooped up on a crowded archipelago. Investment soars.
Europe leads America but lags behind Japan and looks on Japanese progress with hostility. Europeans, too, share dreams of a powerful technology, and begin a race for the lead. The United States trails, but its huge resources and software expertise help it pick up speed as it joins the race. Other efforts also begin, and though they advance steadily, they cannot keep pace with the great power blocs.
On all sides, the obvious military potential of molecular manufacturing fires military interest, then research and development in both publicly announced and secret programs. Strategists play nanotechnology war games in their minds, in their journals, and on their computers. They come away shaken. The more they look, the more strategies they find that would enable a technologically superior power to make a safe, preemptive move—lethal or nonlethal—against all its opponents. Defenses seem possible in principle, but not in time.
Yet it becomes obvious that molecular manufacturing can provide defenses against lesser technologies. Even the great, mythical leak-proof missile shield looks practical when the defenders have vastly superior technology and a thousandfold cost advantage building military equipment.
No great power seems particularly hostile. By then, all have formally or informally been in a peaceful alliance for many years. Yet there are still memories of war, and the bonds of alliance and military cooperation are weakened by the lack of a common enemy and the growth of economic rivalry. And so squabbles over trade in obsolescing twentieth-century technologies poison cooperation in developing and managing the fresh technologies of the twenty-first century.
There are a thousand reasons to pursue military research and development in these technologies, and nationalistic economic competition helps keep that work secret on a nationalistic basis. Military planners must concern themselves not so much with intentions as with capabilities.
And so a technology developed in an atmosphere of commercial rivalry and secrecy matures in an atmosphere of military rivalry and secrecy. Advanced nanotechnologies arrive in the world not as advances in medicine, or in environmental restoration, or as a basis for new wealth, but as military systems developed in the midst of an accelerating multilateral arms race, with the quiet goal of preemptive use. Negotiations and development run neck and neck, and then . . . .