Even back then, research in molecular biology had revealed the existence of smaller, more perfect machines such as the protein molecules in cells. A simulated human cell–put here because earlier visitors wanted to see the size comparisons–its on the chip next to the smaller nanocomputer. The tourguide points out that the simulation cheats a bit at this point, making the cell act as though it were in a watery environment instead of air. The cell dwarfs the nanocomputer, sprawling across the chip surface and rearing into the sky like a small mountain. Walking the nature trail around its edge would lead across many transistor-plateaus and take about an hour. A glance is enough to show how different it is from a nanocomputer or a gear: it looks organic, it bulges and curves like a blob of liver, but its surface is shaggy with waving molecular chains.
Walking up to its edge, you can see that the membrane wrapping the cell is fluid (cell walls are for stiff things like plants), and the membrane molecules are in constant motion. On an impulse, you thrust your arm through the membrane and poke around inside. You can feel many proteins bumping and tumbling around in the cell’s interior fluid, and a crisscrossing network of protein cables and beams. Somewhere inside are the molecular machines that made all these proteins, but such bits of machinery are embedded in a roiling, organic mass. When you pull your arm out, the membrane flows closed behind. The fluid, dynamic structure of the cell is largely self healing. That’s what let scientists perform experimental surgery on cells with the old, crude tools of the twentieth century: They didn’t need to stitch up the holes they made when they poked around inside.
Even a single human cell is huge and complex. No real thinking being could be as small as you are in the simulation: A simple computer without any memory is twice your height, and the larger nanocomputer, the size of an apartment complex, is no smarter than one of the submoronic computers of 1990. Not even a bendable finger could be as small as your simulated fingers: in the simulation, your fingers are only one atom wide, leaving no room for the slimmest possible tendon, to say nothing of nerves.
For a last look at the organic world, you gaze out past the horizon and see the image of your own, full-sized thumb holding the chip on which you stand. The bulge of your thumb rises ten times higher than Mount Everest. Above, filling the sky, is a face looming like the Earth seen from orbit, gazing down. It is your own face, with cheeks the size of continents. The eyes are motionless. Thinking of the tourguide’s data, you remember: The simulation uses the standard mechanical scaling rules, so being 40 million times smaller has made you 40 million times faster. To let you pull free of surfaces, it increased your strength by more than a factor of 100, which increased your speed by more than a factor of 10. So one second in the ordinary world corresponds to over 400 million here in the simulation. It would take years to see that huge face in the sky complete a single eyeblink.
Enough. At the command “Get me out!”, the molecular world vanishes, and your feeling of weight returns as the suit goes slack. You strip off the video goggles—and hugely, slowly, blink.