Some costs apply to a kind of product, regardless of how many copies of it are made: these include design costs, technology licensing costs, regulatory approval costs, and the like. Other costs apply to each unit of a product: these include the costs of labor, energy, raw materials, production equipment, production sites, insurance, and waste disposal. The per-kind costs can become very low if production runs are large. If these costs stay high, it will be because people prefer new products for their new benefits, despite the cost—hardly cause for complaint.
The more basic and easier to analyze costs are per-unit costs. A picture to keep in mind here is of Desert Rose Industries, where molecular machinery does most of the work, and where products are made from parts that are ultimately made from simple chemical substances. Let’s consider some cost components.
Energy: Manufacturing at the molecular scale need not use a lot of energy. Plants build billions of tons of highly patterned material every year using available solar energy. Molecular manufacturing can be efficient, in the sense that the energy needed to build a block of product should be comparable to the energy released in burning an equivalent mass of wood or coal. If this energy were supplied as electricity at today’s costs, the energy cost of manufacturing would be something like a dollar per kilogram. We’ll return to the cost of energy later.
Raw Materials: Molecular manufacturing won’t need exotic materials as inputs. Plain bulk chemicals will suffice, and this means materials no more exotic than the fuels and feedstocks that are, for now, derived from petroleum and biomass—gasoline, methanol, ammonia, and hydrogen. These typically cost tens of cents per kilogram. If bizarre compounds are used, they can be made internally. Rare elements could be avoided, but might be useful in trace amounts. The total quantity of raw materials consumed will be smaller than in conventional manufacturing processes because less will be wasted.
Capital Equipment and Maintenance: As we saw in the Desert Rose scenario, molecular manufacturing can be used to build all of the equipment needed for molecular manufacturing. It seems that this equipment—everything from large vats to submicroscopic special-purpose assemblers—can be reasonably durable, lasting for months or years before being recycled and replaced. If the equipment were to cost dollars per kilogram, and produce many thousands of kilograms of product in its life, the cost of the equipment would add little to the cost of the product.
Waste Disposal: Today’s manufacturing waste is dumped into the air, water, and landfills. There need be no such waste with molecular manufacturing. Excess materials of the kind now spewed into the environment could instead be completely recycled internally, or could emerge from the manufacturing process in pure form, ready for use in some other process. In an advanced process, the only wastes would be leftover atoms resulting from a bad mix of raw materials. Most of these leftover atoms would be ordinary minerals and simple gases like oxygen, the main “waste” from the molecular machinery of plants. Molecular manufacturing produces no new elements—if arsenic comes out, arsenic must have gone in, and the process isn’t to blame for its existence. Any intrinsically toxic materials of this sort can at least be put in the safest form we can devise for disposal. One option would be to chemically bond it into a stable mineral and put it back where it came from.
Labor: Once a plant is operating, it should require little human labor (what people do with their time will change, unless factories are kept running as bizarre hobbies). Desert Rose Industries was run by two people, yet was described as producing large quantities of varied goods. The basic molecular-scale operations of manufacturing have to be automated, since they are too small for people to work on. The other operations are fairly simple and can be aided by equipment for handling materials and information.
Space: Even a manufacturing plant based on nanotechnology takes up room. It would, however, be more compact than familiar manufacturing plants, and could be built in some out-of-the-way place with inexpensive land. These costs should be small by today’s standards.
Insurance: This cost will depend on the state of the law, but some comparisons can be made. Improved sensors and alarms could be made integral parts of products; these should lower fire and theft premiums. Product liability costs should be reduced by safer, more reliable products (we’ll discuss the question of product safety further in Chapter 12). Employee injury rates will be reduced by having less labor input. Still, the legal system in the United States has shown a disturbing tendency to block every new risk, however small, even when this forces people to keep suffering old risks, which are sometimes huge. (The supply of lifesaving vaccines has been threatened in just this way.) When this happens, we kill anonymous people in the name of safety. If this behavior raises insurance premiums in a perverse way, it could discourage a shift to safer manufacturing technologies. Since such costs can grow or shrink independent of the real world of engineering and human welfare, they are beyond our ability to estimate.
Sales, Distribution, Training . . .: These costs will depend on the product: Is it as common as potatoes, and as simple to use? Or is it rare and complex, so that determining what you need, where to get it, and how to use it are the main problems? These service costs are real but can be distinguished from costs of the thing itself.
To summarize, molecular manufacturing should eventually lead to lower costs. The initial expense of developing the technology and specific products will be substantial, but the cost of production can be low. Energy costs (at present prices) and materials costs (ditto) would be significant, but not enormous. They were quoted on a per-kilogram basis, but nanotechnological products, being made of superior materials, will often weigh only a fraction of what familiar products do. (Ballast, were it needed, will be dirt-cheap.) Equipment costs, land costs, waste-disposal costs, and labor costs can be low by the very nature of the technology.
Costs of design, regulation, and insurance will depend strongly on human tastes and are beyond predicting. Basic products, like clothing and housing, can become inexpensive unless we do something to keep them costly. As the cost of improved safety falls, there will be less reason to accept unsafe products. Molecular manufacturing uses processes as controlled and efficient as the molecular processes in plants. Its products could be as inexpensive as potatoes. This may sound to good to be true (and there are downsides, as we’ll discuss), but why shouldn’t it be true? Shouldn’t we expect large changes to come with the replacement of modern technology?