Nanotechnology provides worm-like structures to gang up on cancer cells

A major advantage of nanotechnology in the race to develop better ways to deliver drugs to cancer cells is the wide variety of shapes and sizes that nanotech provides. Spherical nanoparticles are often cleared from circulation by the immune system in minutes—before they can have maximum impact on the cancer cells. Now researchers have joined about eight nanoparticles together to make nanostructures resembling segmented worms, and find these survive many hours. Excerpts from the UC San Diego News Center via ScienceDailyUC San Diego Researchers Target Tumors with Tiny ‘Nanoworms’“:

Scientists at UC San Diego, UC Santa Barbara and MIT have developed nanometer-sized “nanoworms” that can cruise through the bloodstream without significant interference from the body’s immune defense system and—like tiny anti-cancer missiles—home in on tumors.

Their discovery, detailed in this week’s issue of the journal Advanced Materials [abstract], is reminiscent of the 1966 science fiction movie, the Fantastic Voyage, in which a submarine is shrunken to microscopic dimensions, then injected into the bloodstream to remove a blood clot from a diplomat’s brain.

Using nanoworms, doctors should eventually be able to target and reveal the location of developing tumors that are too small to detect by conventional methods. Carrying payloads targeted to specific features on tumors, these microscopic vehicles could also one day provide the means to more effectively deliver toxic anti-cancer drugs to these tumors in high concentrations without negatively impacting other parts of the body.

“Most nanoparticles are recognized by the body’s protective mechanisms, which capture and remove them from the bloodstream within a few minutes,” said Michael Sailor, a professor of chemistry and biochemistry at UC San Diego who headed the research team. “The reason these worms work so well is due to a combination of their shape and to a polymer coating on their surfaces that allows the nanoworms to evade these natural elimination processes. As a result, our nanoworms can circulate in the body of a mouse for many hours.”

…The scientists constructed their nanoworms from spherical iron oxide nanoparticles that join together, like segments of an earthworm, to produce tiny gummy worm-like structures about 30 nanometers long—or about 3 million times smaller than an earthworm. Their iron-oxide composition allows the nanoworms to show up brightly in diagnostic devices, specifically the MRI, or magnetic resonance imaging, machines that are used to find tumors.

…In addition to the polymer coating, which is derived from the biopolymer dextran, the scientists coated their nanoworms with a tumor-specific targeting molecule, a peptide called F3, developed in the laboratory of Erkki Ruoslahti, a cell biologist and professor at the Burnham Institute for Medical Research at UC Santa Barbara. This peptide allows the nanoworms to target and home in on tumors.

“Because of its elongated shape, the nanoworm can carry many F3 molecules that can simultaneously bind to the tumor surface,” said Sailor. “And this cooperative effect significantly improves the ability of the nanoworm to attach to a tumor.”

—Jim

Leave a comment

0
    0
    Your Cart
    Your cart is emptyReturn to Shop