Arbitrarily complex 3D DNA nanostructures built from DNA bricks

A set of 32-nucleotide single strand DNA bricks was designed so that each can interact independently with four other DNA bricks so that sets of hundreds of bricks can self-assemble into arbitrarily complex 25-nm 3D shapes, each comprising 1000 8-base pair volume elements.

Nanotechnology milestone: general method for designing stable proteins

Five proteins were designed from scratch and found to fold into stable proteins as designed, proving the ability to provide ideal, robust building blocks for artificial protein structures.

Writing a single-atom qubit in silicon

A single-electron spin qubit on a phosphorous atom in a conventional silicon computer chip has been coherently manipulated, demonstrating the application of single atom nanotechnology to the development of a scalable platform for a quantum computer.

More complex circuits for synthetic biology lead toward engineered cells

One possible pathway from current technology to advanced nanotechnology that will comprise atomically precise manufacturing implemented by atomically precise machinery is through adaptation and extension of the complex molecular machine systems evolved by biology. Synthetic biology, which engineers new biological systems and function not evolved in nature, is an intermediate stage along this path. An… Continue reading More complex circuits for synthetic biology lead toward engineered cells

The potentially world-changing research that no one knows about

Too much reliance on opportunity-based research could significantly hinder scientific advancement. We have the ability now to explore the specifics of potential future technologies, and the knowledge gained could, in turn, add useful and possibly surprising priorities for research today.

Biological molecular motors programmed to run DNA chasis

Two types of biological molecular motors that run in opposite directions along a protein track can be used in different arrangements to either move a complex DNA cargo along the track or engage in a tug-of-war.

Metal-organic frameworks provide large molecular cages for nanotechnology

Large molecular cages constructed from metal-organic frameworks have set a record for the greatest surface area in the least mass.

Metal-organic frameworks (MOFs) are back in the news again. A few months ago we cited the use of MOFs by Canadian chemists to self-assemble a molecular wheel on an axis in a solid material. More recently chemists at Northwestern University have used MOFs to set a world record for surface area. From “A world record for highest-surface-area materials“:

Northwestern University researchers have broken a world record by creating two new synthetic materials with the greatest amount of surface areas reported to date.

Named NU-109 and NU-110, the materials belong to a class of crystalline nanostructure known as metal-organic frameworks (MOFs) that are promising vessels for natural-gas and hydrogen storage for vehicles, and for catalysts, chemical sensing, light harvesting, drug delivery, and other uses requiring a large surface area per unit weight.

The materials’ promise lies in their vast internal surface area. If the internal surface area of one NU-110 crystal the size of a grain of salt could be unfolded, the surface area would cover a desktop. …

MOFs are composed of organic linkers held together by metal atoms, resulting in a molecular cage-like structure. The researchers believe they may be able to more than double the surface area of the materials by using less bulky linker units in the materials’ design. …

Beyond their near-term practical applications, Eric Drexler has cited MOFs as potentially useful building blocks in the molecular machine path to molecular manufacturing. Near-term applications may drive the technology development to produce more choices for molecular machine system components.
—James Lewis, PhD

Assembling biomolecular nanomachines: a path to a nanofactory?

A “cut and paste” method uses an atomic force microscope to assemble protein and DNA molecules to form arbitrarily complex patterns on a surface. Developing this approach to form enzymatic assembly lines could be a path toward a general purpose nanofactory.

Measuring individual chemical bonds with noncontact-AFM

Noncontact atomic force microscopy using a tip functionalized with a single molecule provides highly precise measurement of individual chemical bond lengths and bond orders (roughly, bond strength).

Rational design of peptoids: a route to advanced nanotechnology?

A combination of theoretical and experimental work on peptoids, synthetic analogs of proteins, points to the ability to design peptoids with desired structures and functions.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop