Nearly perfect carbon nanotubes key to energy-saving lights

Planar light source device (Left-front, Right-rear) Photo Credit-N. Shimoi/Tohoku University

Foresight’s recent Workshop on Directed/Programmable Matter for Energy focused on the potential of atomically precise materials for energy production, transport, and efficient use. A hat tip to Kurzweil Accelerating Intelligence for describing how scientists from Tohoku University in Japan had combined carbon nanotube field emitters with a solution of indium oxide and tin oxide to produce a very efficient planar light source. From an AIP Publishing news release by Zhengzheng Zhang “Beyond LEDs: Brighter, New Energy-Saving Flat Panel Lights Based on Carbon Nanotubes“:

Even as the 2014 Nobel Prize in Physics has enshrined light emitting diodes (LEDs) as the single most significant and disruptive energy-efficient lighting solution of today, scientists around the world continue unabated to search for the even-better-bulbs of tomorrow.

Enter carbon electronics.

Electronics based on carbon, especially carbon nanotubes (CNTs), are emerging as successors to silicon for making semiconductor materials, And they may enable a new generation of brighter, low-power, low-cost lighting devices that could challenge the dominance of light-emitting diodes (LEDs) in the future and help meet society’s ever-escalating demand for greener bulbs.

Scientists from Tohoku University in Japan have developed a new type of energy-efficient flat light source based on carbon nanotubes with very low power consumption of around 0.1 Watt for every hour’s operation — about a hundred times lower than that of an LED.

In the journal Review of Scientific Instruments [abstract], from AIP Publishing, the researchers detail the fabrication and optimization of the device, which is based on a phosphor screen and single-walled carbon nanotubes as electrodes in a diode structure. You can think of it as a field of tungsten filaments shrunk to microscopic proportions.

They assembled the device from a mixture liquid containing highly crystalline single-walled carbon nanotubes dispersed in an organic solvent mixed with a soap-like chemical known as a surfactant. Then, they “painted” the mixture onto the positive electrode or cathode, and scratched the surface with sandpaper to form a light panel capable of producing a large, stable and homogenous emission current with low energy consumption.

“Our simple ‘diode’ panel could obtain high brightness efficiency of 60 Lumen per Watt, which holds excellent potential for a lighting device with low power consumption,” said Norihiro Shimoi, the lead researcher and an associate professor of environmental studies at the Tohoku University. …

This work demonstrates that it is not necessary to develop a complete atomically precise manufacturing system to obtain many of the benefits provided by atomically precise materials; in this case the product was fabricated by painting a liquid containing highly crystalline single-walled carbon nanotubes onto a cathode. The critical factor in achieving high energy efficiency was the atomically precise nature of the carbon nanotubes:

Highly crystalline single-walled carbon nanotubes (HCSWCNT) have nearly zero defects in the carbon network on the surface, Shimoi explained. “The resistance of cathode electrode with highly crystalline single-walled carbon nanotube is very low. Thus, the new flat-panel device has smaller energy loss compared with other current lighting devices, which can be used to make energy-efficient cathodes that [function] with low power consumption.”

The remainder of the manufacturing process is a stable, low-cost method to fabricate uniformly thin films of large area.
—James Lewis, PhD

Leave a comment

0
    0
    Your Cart
    Your cart is emptyReturn to Shop
      Privacy Overview

      This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.