The atomically precise manufacture of quantum dots

Using an STM to precisely position indium adatoms on an indium arsenide surface, nanotechnologists have created a series of atomically precise quantum dots, and joined them with atomic precision to make quantum dot molecules, opening new avenues to construct practical quantum devices for computing and other applications.

Lipid coat protects DNA nanorobot from immune attack

Enveloped DNA nanostructures were developed to escape attacks from nucleases and the immune system, opening a path to ever more sophisticated DNA nanomedical devices.

Robust triangular RNA brick adds to RNA nanotechnology toolkit

The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.

Novel properties for nanotechnology rebar-graphene reinforced with carbon nanotubes

Carbon-containing functional groups decorating carbon nanotubes decompose upon heating on copper foil to form a nanotube-reinforced graphene with novel properties that mimic those of expensive indium-tin-oxide.

DNA nanotechnology replicates enzyme cascade

A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.

Expanded DNA alphabet provides more options for nanotechnology

A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.

Nanotechnology to provide efficient, inexpensive water desalination

Two different nanotechnology-based approaches to use graphene as the basis for purification and desalination of water look promising.

Nanotechnology to provide better solar cells, optical devices

A novel method to control the configuration of atoms in semiconductors grown on graphene will make possible a vast array of new optical devices, including better solar cells.

To fight inflammation nanoparticles turn ‘naughty’ neutrophils into ‘nice’ neutrophils

By targeting the protein that attaches a type of immune cell called neutrophils to blood vessel walls where they cause serious tissues damage, the neutrophils are released and returned to the circulation to resume their normal functions.

Novel nanoparticle efficiently silences gene expression in liver cells

RNA interference provides potential cures for various diseases by silencing the expression of specific genes in specific organs, but delivering the RNA molecules to the right place is very difficult. A novel nanoparticle provides unprecedented efficiency in silencing target genes in liver cells.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop