Advanced nanofactories in twenty years?

An article in The Guardian quotes Christine Peterson and Robert Freitas on the vision of molecular manufacturing. Freitas is quoted as expecting that the development of nanofactories could be done in 20 years for “on the order of” one billion dollars.

Artificial molecular motor controls molecular transformation

A four-step unidirectional molecular motor driven by light and temperature changes catalyzes different chemical reactions at different steps of its rotary cycle.

Arrays of artificial molecular machines could lead to atomically precise nanotechnology

A tutorial review available after free registration presents a theory-based exploration of the difficulty in moving from simple molecular switches to arrays of artificial molecular machines capable to doing substantial, useful external work.

RNA CAD tool for synthetic biology may facilitate RNA nanotechnology

RNA CAD tools developed for RNA-regulated control of gene expression in synthetic biology successfully engineered metabolic pathways in bacteria. Will engineering RNA-based genetic control systems lead to design tools for other RNA-based molecular machine systems?

Tutorial review of the promise of artificial molecular machines

A tutorial review addresses the distinction between the many simple artificial molecular devices that are currently available and truly effective artificial molecular machines that would mimic the ubiquitous molecular machines present in living systems.

Lecture by Eric Drexler at Oxford on physical law and the future of nanotechnology (video)

In a lecture at Oxford Eric Drexler argued that atomically precise manufacturing will be the next great revolution in the material basis of civilization, and discussed how we can establish reliable knowledge about key aspects of such technologies.

An artificial molecular clock to control artificial molecular machines

The oscillating synthesis and degradation of regulatory RNA molecules was used to produce a molecular clock to control the opening and closing of a DNA tweezers, and also to control the production of another RNA molecule to alter the fluorescence of a dye molecule.

Self-replication achieved using structural DNA nanotechnology

Tiles made from DNA helices have been made to self-assemble into a more complex structure, which then was used to seed the formation of a complementary structure. This second structure in turn seeded the formation of multiple copies of the first structure.

Engineered bacteria provide new tool for nanotechnology protein design

Engineered bacteria that incorporate unnatural amino acids at multiple positions provide a new tool that may facilitate designing proteins to fold more predictably into molecular machinery components.

Mechanical force splits molecule that cannot otherwise be split

Ultrasound was used to pull on polymer chains attached to opposite sides of a chemically almost inert molecular ring, splitting it into its two components.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop