The photos from the 2014 Foresight Technical Conference highlight entrepreneurial efforts in space, biotechnology, and life extension.
Photos from 2014 Foresight Technical Conference

The photos from the 2014 Foresight Technical Conference highlight entrepreneurial efforts in space, biotechnology, and life extension.
The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.
Carbon-containing functional groups decorating carbon nanotubes decompose upon heating on copper foil to form a nanotube-reinforced graphene with novel properties that mimic those of expensive indium-tin-oxide.
A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.
A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.
Two different nanotechnology-based approaches to use graphene as the basis for purification and desalination of water look promising.
A novel method to control the configuration of atoms in semiconductors grown on graphene will make possible a vast array of new optical devices, including better solar cells.
Reviewing Eric Drexler’s Radical Abundance, Phil Bowermaster provides an informed and insightful overview of the controversies that greeted the proposal for a nanotechnology aimed at developing a practical technology for atomically precise manufacturing. Along the way he shows how Drexler’s outlook evolved from 1986 to 2013.
By targeting the protein that attaches a type of immune cell called neutrophils to blood vessel walls where they cause serious tissues damage, the neutrophils are released and returned to the circulation to resume their normal functions.
RNA interference provides potential cures for various diseases by silencing the expression of specific genes in specific organs, but delivering the RNA molecules to the right place is very difficult. A novel nanoparticle provides unprecedented efficiency in silencing target genes in liver cells.