A talk at TEDxBerkeley includes nanotechnology among the options for digital fabrication, one of five new rules of innovation.
A talk at TEDxBerkeley includes nanotechnology among the options for digital fabrication, one of five new rules of innovation.
New computational methods to explore the rapidly expanding collection of high resolution three-dimensional RNA structures reveal new RNA structural motifs, identifying additional building blocks for complex RNA nanostructures.
Artist’s conception of a nanopore drilled into a layer of graphene to speed up DNA sequencing. One of the greatest promises of near-term nanotechnoloogy is cheaper DNA sequencing to speed the development of personalized medicine. There are not only genetic differences between different patients, but also genetic differences between, for example, different cancers of the… Continue reading Nanotechnology, DNA sequencing, and personalized medicine
Scientists at Kyoto University and the University of Oxford have combined DNA origami and DNA motors to take another step toward programmed artificial molecular assembly lines.
Foldit game players have again out-performed scientists in protein design, this time improving the design of a protein designed from scratch to catalyze Diels-Alder cycloadditions.
An article in The Guardian quotes Christine Peterson and Robert Freitas on the vision of molecular manufacturing. Freitas is quoted as expecting that the development of nanofactories could be done in 20 years for “on the order of” one billion dollars.
The first Master’s of Science in Nanomedicine degree program in US is announced. As an example of the rapidly developing potential of nanomedicine, a novel type of nanoparticle succeeded in two different mouse models in destroying a type of brain cancer that had previously been completely resistant to all treatment attempts.
A tutorial review available after free registration presents a theory-based exploration of the difficulty in moving from simple molecular switches to arrays of artificial molecular machines capable to doing substantial, useful external work.
RNA CAD tools developed for RNA-regulated control of gene expression in synthetic biology successfully engineered metabolic pathways in bacteria. Will engineering RNA-based genetic control systems lead to design tools for other RNA-based molecular machine systems?
Protein-like structures called peptoids can be formed into stable, free-floating nanosheets.