Register by Sept. 5 to attend a Proposers Day webinar on either Sept. 9 or 11 to learn the technical objectives of DARPA’s new “Atoms to product: Aiming to make nanoscale benefits life-sized” program.
Register by Sept. 5 to attend a Proposers Day webinar on either Sept. 9 or 11 to learn the technical objectives of DARPA’s new “Atoms to product: Aiming to make nanoscale benefits life-sized” program.
An interview with UK nanotechnologist Richard Jones argues that the surest and most efficient path to advanced nanomachine function will incorporate or mimic biomolecular nanomachinery rather than scaled down rigid conventional machinery.
Study shows more than 500 firms involved in nanobiotechnology, which is expected to soon triple in size. Research points to the importance of broad networks and deep collaborations.
With biotech fundamental to several paths to advanced nanotechnology, a way to do biotech experiments in the cloud offers small groups the chance to quickly test their ideas.
B.R.AI.N.S., Berkeley BioLabs, and Foresight Institute to build an open source biological parts repository and design and distribute a line of “How-to Build Biological Machines” educational kits.
Enveloped DNA nanostructures were developed to escape attacks from nucleases and the immune system, opening a path to ever more sophisticated DNA nanomedical devices.
The photos from the 2014 Foresight Technical Conference highlight entrepreneurial efforts in space, biotechnology, and life extension.
The complex molecular recognition code of RNA offers RNA nanotechnology a greater variety of 3D structures and functions than are present in DNA nanotechnology, but the RNA structures can be fragile. New RNA triangles that resist boiling solve this problem.
A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.
A bacterium has been engineered to stably propagate a DNA written with six letters instead of the usual four, greatly expanding the number of amino acids, both natural and synthetic, that can be genetically encoded. Further work could lead to novel proteins incorporating these additional amino acids, and from there to novel materials, devices, and machines.