Atomic resolution measurement of quasi-particle tunneling maps of spin-resolved states reveals interference processes that allow simulation of processes important for developing quantum computers based on atomically precise doping of silicon.
Atomic resolution measurement of quasi-particle tunneling maps of spin-resolved states reveals interference processes that allow simulation of processes important for developing quantum computers based on atomically precise doping of silicon.
Computational design of an enzyme that carboligates three one-carbon molecules to form one three-carbon molecule, an activity that does not exist in nature, provides proof-of-principle for a novel metabolic pathway for carbon fixation.
A DNA strand capable of forming a triple helix with a portion of the DNA double helices in a macroscopic DNA crystal enhances the weak interactions holding the crystal together so that the crystal remains stable in the absence of a high ionic strength environment.
A specially designed triplex forming oligonucleotide bearing a cargo molecule binds to a specific sequence in the major groove of a DNA double helix to form a modified DNA tile that self assembles into a macroscopic crystal in which each helix carries a cargo molecule positioned to sub-nanometer precision.
Structural DNA nanotechnology: progress toward a precise self-assembling three dimensional scaffold by building macroscopic crystals from nanoscale structures.
Five calcium ions held several micrometers apart in an ion trap and manipulated by laser pulses implement Shor’s factorization algorithm more efficiently than previous implementations.
Small, stiff, rectangular rods made using scaffolded DNA origami bypass drug resistance mechanisms in the membranes of a cultured leukemia cell line and release enough therapeutic drug to kill the cancer cell.
Increasing efficiency and utilization and lowering costs for harvesting, converting, transporting, and storing energy produced from sunlight provides a showcase for a variety of nanoscale materials, structures, and processes.
California Institute of Technology is holding a symposium to honor Paul Rothemund’s seminal contribution to the field of DNA nanotechnology: the research paths opened by the technology, and where they might lead.
Thousands of amateurs playing the online RNA folding game Eterna, backed up by a real-world automated lab testing their predictions, have provided insights to improve the algorithms computers use to design RNA molecules.