Revolution of DNA around a central channel, rather than rotation, is the method used by a viral molecular motor to package DNA. A structure facilitating bottom-up assembly may lead to roles in nanotechnology for these nanomotors.
Revolution of DNA around a central channel, rather than rotation, is the method used by a viral molecular motor to package DNA. A structure facilitating bottom-up assembly may lead to roles in nanotechnology for these nanomotors.
In anticipation of Eric Drexler’s new book, Forbes contributor Bruce Dorminey interviews him about the meaning of nanotechnology and its revolutionary prospects. Selected excerpt: … In what fields would APM cause the most pronounced economic disruption and the collapse of global supply chains to more local chains? The digital revolution had far-reaching effects on information… Continue reading Nanotechnology revolution: An interview with Eric Drexler
Nanoparticles decorated to avoid immune system recognition were tested in mice and shown to survive longer and deliver more imaging dye and drug to tumor cells.
In this Forbes interview, contributor John Nosta introduces us to a teen worth watching: fifteen-year-old Jack Andraka, whose effort to design a nanotube-based sensor for pancreatic cancer detection was initially ignored. The interview taps into some aspects of how innovation occurs and the challenges of bringing new ideas to fruition – aspects which transcend age,… Continue reading A teenager's step toward nanomedicine innovation
Core-shell nanocapsules deliver a potent protein complex to the nucleus of cancer cells where it induces them to commit suicide, while the complex degrades harmlessly in the cytoplasm of normal cells.
In a 47-minute interview Christine Peterson discusses the future that science and technology is bringing over the next few decades, and how to get involved to push the future in a positive direction.
An interview with Foresight Co-Founder and Past President Christine Peterson covering both the current state and the future prospects of nanotechnology is available on Youtube.
A demonstration that most fundamental biological processes can be implemented in a test tube as efficiently as in live bacteria provides synthetic biology the tools to create a ‘new industrial revolution’, which may or may not lead to more general molecular manufacturing.
Researchers from Johns Hopkins and Northwestern Universities developed a set of shape-tunable DNA-copolymer nanoparticles that incorporate a fixed amount of DNA yet display as much as 1,680-fold difference in transfection efficiency in rat liver studies. The study may shed new light on the importance of shape in nanoparticle-based drug delivery and gene therapy.
Optimizing the size and charge of nanoparticles engineered from polymers delivers drugs directly to mitochondria, effectively treating cells with drugs for a variety of diseases.