The demonstration that the process of DNA replication is more flexible than thought should make it easier to incorporate unusual amino acids into designed proteins, which might make it easier to design novel protein machines.
The demonstration that the process of DNA replication is more flexible than thought should make it easier to incorporate unusual amino acids into designed proteins, which might make it easier to design novel protein machines.
A variety of protein cage structures have been constructed by designing specific protein domains to self-assemble as atomically precise protein building blocks in defined geometries.
A set of 310 short single-stranded DNA tiles, plus a few additional short sequences for the edges, has been used to form more than a hundred large, complex DNA objects.
Darpa has launched a “Living Foundries” program to bring an engineering perspective to synthetic biology to greatly accelerate progress through standardization and modularization.
A set of rationally engineered transcriptional regulators for yeast will make it easier to build complex molecular machine systems in yeast, some of which may become useful additions to pathway technologies for atomically precise manufacturing and productive nanosystems.
Functioning DNA nanorobots to deliver specific molecular signals to cells were designed by combining DNA origami, DNA aptamers, and DNA logic gates.
A set of machine learning programs can now predict properties of small organic molecules as accurately as can calculations based upon the Schrödinger equation, but in milliseconds rather than hours.
Researchers in Australia and the US have demonstrated a working transistor by placing of single atom of phosphorous with atomic precision between gates made of wires only a few phosphorous atoms wide. This demonstration points to possibly extending current computer technology to the atomic scale.
Scientists at Kyoto University and the University of Oxford have combined DNA origami and DNA motors to take another step toward programmed artificial molecular assembly lines.
Foldit game players have again out-performed scientists in protein design, this time improving the design of a protein designed from scratch to catalyze Diels-Alder cycloadditions.