An interview with UK nanotechnologist Richard Jones argues that the surest and most efficient path to advanced nanomachine function will incorporate or mimic biomolecular nanomachinery rather than scaled down rigid conventional machinery.
An interview with UK nanotechnologist Richard Jones argues that the surest and most efficient path to advanced nanomachine function will incorporate or mimic biomolecular nanomachinery rather than scaled down rigid conventional machinery.
Attaching a 200-nm-diameter magnetic bead to a 1-nm diameter synthetic molecular machine allowed optical visualization of the motion of the machine and manipulation with a magnetic tweezers.
Nanotech promises more commonplace access to advanced technology as material and fabrication costs fall and traditional barriers to innovation are removed. Examples are already being seen globally: more access to laptops and cell phones in developing countries, desktop 3D printers, a surge in establishment of shared-use research facilities, etc. A couple recent cases getting attention… Continue reading Recent cases of 'accessible' high-tech: Open source chips & Origami robots
B.R.AI.N.S., Berkeley BioLabs, and Foresight Institute to build an open source biological parts repository and design and distribute a line of “How-to Build Biological Machines” educational kits.
A swinging DNA arm added to a DNA scaffold makes it possible for two enzymes attached to the scaffold to complete a coupled chemical reaction.
A possible top-down path to atomically precise manufacturing that passes through microscale machinery might be rendered easier because of recent progress in suppressing the Casimir force, which contributes to the ‘stiction’ problem often encountered with microelectromechanical systems.
A DNA clamp engineered for higher specificity and higher affinity may improve cancer diagnosis and treatment and may also mean better control over building nanomachines.
A possible forerunner to a future molecular assembly line uses an artificial DNA motor to transport an artificial nanoparticle along a carbon nanotube track.
A study of RNA structures actually present in cells reveals that cells spend energy restricting thermodynamically driven RNA folding so that fewer RNA structures are found in cells than in test tubes.
A collection of open access journals on a variety of topics provides a very useful entry point to the rapidly growing collection of scientific, technical, and scholarly research that is not hidden behind pay walls.