Simulation of quantum entanglement with subsurface dopant atoms

Atomic resolution measurement of quasi-particle tunneling maps of spin-resolved states reveals interference processes that allow simulation of processes important for developing quantum computers based on atomically precise doping of silicon.

Protein design provides a novel metabolic path for carbon fixation

Computational design of an enzyme that carboligates three one-carbon molecules to form one three-carbon molecule, an activity that does not exist in nature, provides proof-of-principle for a novel metabolic pathway for carbon fixation.

Powerful nanoengine built from coated nanoparticles

A nanoengine 100 times more powerful than known nanomotors and muscles was demonstrated using the aggregation and dispersal of gold nanoparticles coated with a polymer that undergoes a rapid transition from hydrophobic to hydrophilic.

Triple helices stabilize macroscopic crystals for DNA nanotechnology

A DNA strand capable of forming a triple helix with a portion of the DNA double helices in a macroscopic DNA crystal enhances the weak interactions holding the crystal together so that the crystal remains stable in the absence of a high ionic strength environment.

DNA triplex formation decorates DNA crystals with sub-nanometer precision

A specially designed triplex forming oligonucleotide bearing a cargo molecule binds to a specific sequence in the major groove of a DNA double helix to form a modified DNA tile that self assembles into a macroscopic crystal in which each helix carries a cargo molecule positioned to sub-nanometer precision.

Macroscopic DNA crystals from molecular tensegrity triangles

Structural DNA nanotechnology: progress toward a precise self-assembling three dimensional scaffold by building macroscopic crystals from nanoscale structures.

Five ionized atoms provide scalable implementation of quantum computation algorithm

Five calcium ions held several micrometers apart in an ion trap and manipulated by laser pulses implement Shor’s factorization algorithm more efficiently than previous implementations.

DNA nanotechnology defeats drug resistance in cancer cells

Small, stiff, rectangular rods made using scaffolded DNA origami bypass drug resistance mechanisms in the membranes of a cultured leukemia cell line and release enough therapeutic drug to kill the cancer cell.

Crowd-sourced RNA structure design uncovers new insights

Thousands of amateurs playing the online RNA folding game Eterna, backed up by a real-world automated lab testing their predictions, have provided insights to improve the algorithms computers use to design RNA molecules.

Tightly-fitted DNA parts form dynamic nanomachine

A rotor with DNA origami parts held together by an engineered tight fit instead of by covalent bonds can revolve freely, driven by Brownian motion and dwelling at engineered docking sites.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop