Cleanly placing atomically precise graphene nanoribbons

Atomically precise chevron-shaped graphene nanoribbons were purified after solution synthesis, cleanly placed by dry contact transfer on a hydrogen-passivated Si surface, imaged and manipulated by scanning tunneling microscopy, and covalently bonded to depassivated surface positions.

Designing novel protein backbones through digital evolution

Computational recombination of small elements of structure from known protein structures generates a vast library of designs that balance protein stability with the potential for new functions and novel interactions.

Adding modular hydrogen-bond networks to protein design

Computer designed networks of hydrogen bonds allow programming specific interactions of protein interfaces, facilitating programming molecular recognition.

Chemical fuel keeps molecular motor moving

Removing the necessity of providing several different chemical fuels in a series of distinct steps, a novel chemically-fueled molecular motor autonomously produces movement as long as the fuel supply lasts.

Rational improvement of DNA nanodevice function

Recent research documents a structure-based rational design strategy combining molecular dynamics and single molecule imaging to improve the performance of a DNA tweezers that accurately positions an enzyme and its cofactor.

Atomically precise location of dopants a step toward quantum computers

Precise matching of STM images and theoretical calculations provides exact lattice locations of dopant atoms, advancing the prospects for silicon-based quantum computers.

Watching individual chemical bonds during a reaction

Combining computational nanotechnology with a noncontact-atomic force microscope probe tipped by a single CO molecule allowed researchers to visualize the dance of individual chemical bonds during a complex organic reaction on a silver surface.

Peptoid nanosheets assemble by different design rule

Chains of monomers joined by non-biological peptoid bonds follow different rules of self-assembly and form structures not found in chains joined by the peptide bonds used to form proteins.

Engineered protein assembles molecules into atomically precise lattice

An engineered protein controls the assembly of C60 fullerene molecules into an atomically precise lattice that conducts electricity while neither component alone would.

Another powerful nanoengine remembered

The claim that the recently reported actuating nanotransducers (ANTS) produce forces “orders of magnitude larger than any produced previously” is challenged by a nanocrystal carbon nanotube device reported 11 years ago.