Conference video: Nanoscale Materials, Devices, and Processing Predicted from First Principles

Prof. William Goddard presented four advances from his research group that enable going from first principles quantum mechanics calculations to realistic nanosystems of interest with millions or billions of atoms.

Conference video: Mythbusting Knowledge Transfer Mechanisms through Science Gateways

Prof. Gerhard Klimeck described the success of nanoHUB.org, a science and engineering gateway providing online simulations through a web browser for nanotechnology research and education.

Molecular arm grabs, transports, releases molecular cargo

A molecular robotic arm synthesized from small synthetic organic molecules uses cyclic changes in pH and other reaction conditions to grab and release a cargo molecule, and swing the cargo back and forth between the two ends of the molecular platform.

Single-molecule light-driven nanosubmarine

Each time a laser pulse actuates the cis-trans isomerization of a single carbon-carbon double bond, a single-molecule nanosubmarine made of 244 atoms is driven forward 9 nm against Brownian diffusion.

Generating hydrogen with single atom catalysts

Single cobalt atoms have been positioned in nitrogen-doped graphene to catalytically produce hydrogen from water almost as effectively as using vastly more expensive platinum catalysts.

Free online edition of The Feynman Lectures on Physics

A free to read online edition of the classic 3-volume physics text developed from Richard Feynman’s legendary Cal Tech physics lectures, specially designed for online reading, has been made available by the California Institute of Technology and the Feynman Lectures Website.

Foresight co-founder on the future of the human lifespan

Optimized Geek podcast featured Christine Peterson on the future of nanotechnology, human lifespan, artificial intelligence, finding love, and other topics.

Conference video: Bringing Computational Programmability to Nanostructured Surfaces

Dr. Alex Wissner-Gross surveyed the interplay between programmability of bits and atoms in the development of technology, asking how the recent successes with programming bits can help nanotechnology progress in programming atoms.

Addressable molecular machines arranged in a porous crystal

Simple molecular switches based upon bistable mechanically interlocked molecules can be incorporated within pre-assembled metal organic frameworks and addressed electrochemically.

Overview of molecular machines documents recent progress

A review of molecular parts that act as switches, motors, and ratchets illuminates similarities between artificial and biological molecular machines and argues that useful applications are coming.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop