We found 31 results for your search.

Automated design of polyhedral meshes for DNA origami

An automated design process folds arbitrary meshes to produce DNA origami structures difficult to design by previous methods, including more open structures that are stable in ionic conditions used in biological assays.

Arranging molecular chromophores on DNA brick nanobreadboards

Nanobreadboards made of DNA bricks provide twice the positional precision, twice the packing density, and faster prototyping than do alternative means to arrange functional molecules.

DNA nanoswitches open window on molecular interactions

Positioning two or more molecules along a long DNA strand can cause the DNA molecule to adopt different shapes if the molecules interact. Quickly and cheaply separating these shapes by a simple gel electrophoresis assay provides a wealth of information about how the molecules interact.

Designing mechanical functions into DNA nanotechnology

An overview of three decades of progress in DNA nanotechnology emphasizes bringing programmed motion to DNA nanostructures, including efforts to incorporate design principles from macroscopic mechanical engineering.

A tunable hinge joint for DNA nanotechnology

Variable length single-stranded DNA springs determine how far a hinge of double-stranded DNA joining two stiff sections of DNA origami can bend.

Structural DNA nanotechnology with programmed motions

Scaffolded DNA origami is combined with hinges of single- or double-stranded DNA to built simple machines parts that have been combined to program simple to complex motions.

Swarms of DNA nanorobots execute complex tasks in living animal

Combinations of different types of DNA nanorobots, implementing different logic gates, work together to tag a specific type of cell in a living cockroach depending on the presence or absence of two protein signals.

Computational framework for structural DNA nanotechnology

A more general computational framework predicts the structures of 2D and 3D-curved DNA nanostructures impossible to predict using previously available computational methods. May lead to 3D-printing DNA nanostructures?

Using DNA nanotechnology to cast arbitrarily shaped nanoparticles

Metal or other inorganic nanoparticles of 20 to 30-nm scale can be cast in arbitrary 3D shapes and configurations dictated by stiff, atomically precise molds constructed using scaffold DNA origami.

DNA nanotechnology and the atoms to micrometer nanofabrication gap

A new DARPA program seeks to bridge the gap from atoms to macroscale product manufacture in two steps, the first of which is from atoms to micrometer-scale feedstocks. DNA origami may be part of the solution.

0
    0
    Your Cart
    Your cart is emptyReturn to Shop